• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 28
  • 9
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 153
  • 153
  • 73
  • 32
  • 32
  • 27
  • 23
  • 23
  • 22
  • 20
  • 19
  • 19
  • 19
  • 18
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Non-additive probabilities and quantum logic in finite quantum systems

Vourdas, Apostolos January 2016 (has links)
Yes / A quantum system Σ(d) with variables in Z(d) and with Hilbert space H(d), is considered. It is shown that the additivity relation of Kolmogorov probabilities, is not valid in the Birkhoff-von Neumann orthocomplemented modular lattice of subspaces L(d). A second lattice Λ(d) which is distributive and contains the subsystems of Σ(d) is also considered. It is shown that in this case also, the additivity relation of Kolmogorov probabilities is not valid. This suggests that a more general (than Kolmogorov) probability theory is needed, and here we adopt the Dempster-Shafer probability theory. In both of these lattices, there are sublattices which are Boolean algebras, and within these 'islands' quantum probabilities are additive.
42

Fast Fourier transforms and fast Wigner and Weyl functions in large quantum systems

Lei, Ci, Vourdas, Apostolos 05 July 2024 (has links)
Yes / Two methods for fast Fourier transforms are used in a quantum context. The first method is for systems with dimension of the Hilbert space with d an odd integer, and is inspired by the Cooley-Tukey formalism. The ‘large Fourier transform’ is expressed as a sequence of n ‘small Fourier transforms’ (together with some other transforms) in quantum systems with d-dimensional Hilbert space. Limitations of the method are discussed. In some special cases, the n Fourier transforms can be performed in parallel. The second method is for systems with dimension of the Hilbert space with odd integers coprime to each other. It is inspired by the Good formalism, which in turn is based on the Chinese reminder theorem. In this case also the ‘large Fourier transform’ is expressed as a sequence of n ‘small Fourier transforms’ (that involve some constants related to the number theory that describes the formalism). The ‘small Fourier transforms’ can be performed in a classical computer or in a quantum computer (in which case we have the additional well known advantages of quantum Fourier transform circuits). In the case that the small Fourier transforms are performed with a classical computer, complexity arguments for both methods show the reduction in computational time from to . The second method is also used for the fast calculation of Wigner and Weyl functions, in quantum systems with large finite dimension of the Hilbert space.
43

Coherence protection by the quantum Zeno effect and nonholonomic control in a Rydberg rubidium isotope.

Brion, E., Akulin, V.M., Comparat, D., Dumer, I., Harel, Gil, Kabaili, N., Mazets, I., Kurizki, G., Pillet, P. January 2005 (has links)
No / The protection of the coherence of open quantum systems against the influence of their environment is a very topical issue. A scheme is proposed here which protects a general quantum system from the action of a set of arbitrary uncontrolled unitary evolutions. This method draws its inspiration from ideas of standard error-correction (ancilla adding, coding and decoding) and the Quantum Zeno Effect. A pedagogical demonstration of our method on a simple atomic system, namely a Rubidium isotope, is proposed.
44

Paths of zeros of analytic functions describing finite quantum systems.

Eissa, Hend A., Evangelides, Pavlos, Lei, Ci, Vourdas, Apostolos 09 November 2015 (has links)
Yes / Quantum systems with positions and momenta in Z(d) are described by the d zeros of analytic functions on a torus. The d paths of these zeros on the torus describe the time evolution of the system. A semi-analytic method for the calculation of these paths of the zeros is discussed. Detailed analysis of the paths for periodic systems is presented. A periodic system which has the displacement operator to a real power t, as time evolution operator, is studied. Several numerical examples, which elucidate these ideas, are presented.
45

Controlabilidade de sistemas de hardware para computação quântica: definição do problema e discussão de aspectos analíticos e numéricos. / Controllability of hardware systems for quantum computing: problem possing and discussion of analytical and numerical topics.

Cunha, Leandro Dias 21 March 2016 (has links)
Este trabalho possui como tema principal o estudo da dinâmica de sistemas quânticos da perspectiva da teoria de sistemas dinâmicos, em particular, do ponto de vista da teoria de controle. Os principais tópicos abordados são (i) a análise da controlabilidade dos sistemas quânticos em dimensão finita e infinita e (ii) a teoria generalizada de medição de sistemas quânticos com o objetivo de obter as equações diferenciais estocásticas associadas a sistemas submetidos a processos de medição contínuos. Com relação à controlabilidade de sistemas dinâmicos quânticos fechados em dimensão finita resgatamos da literatura os resultados, já consolidados, da aplicação da teoria de grupos e álgebras de Lie aos essa classe de sistemas dinâmicos. Em dimensão infinita, a aplicação direta das técnicas de controle geométrico já não ocorre diretamente. Em espaços de estados de dimensão infinita as técnicas de análise matemática devem ser mais sofisticadas, há problemas relacionados à convergência e problemas relacionados a operadores não limitados. Os principais resultados conhecidos da literatura são apresentados e suas limitações são discutidas. Realizamos em seguida uma analogia entre sistemas clássicos lineares e sistemas dinâmicos quânticos de dimensão infinita cuja dinâmica é restrita a uma álgebra de operadores auto adjuntos comutativa. Observamos também que a controlabilidade de alguns sistemas quânticos em dimensão infinita está associada a Hamiltonianos não lineares. Notamos, em particular, que os sistemas quânticos comutativos estão associados a operadores não lineares. Com relação à teoria de medição de sistemas quânticos, partimos da teoria de sistemas quânticos abertos para a obtenção da equação dinâmica que rege a evolução dos sistemas não conservativos. Em paralelo, realizamos uma análise da descrição matemáticas dos experimentos de medição em sistemas quânticos desde os postulados de medição ortogonal até a descrição de processos de medição contínuos. Observamos que a equação de Schrödinger estocástica associada a um processo de medição contínuo possui como gerador infinitesimal um Hamiltoniano não linear no operador auto adjunto associado ao observável. Realizamos em seguida uma discussão a respeito das implicações de processos de medição contínuos na dinâmica de sistemas quânticos, analisando possíveis impactos em sua controlabilidade. Analisamos também o caso particular de sistemas quânticos cujos operadores associados a sua dinâmica e a seus observáveis estão restritos a uma mesma álgebra comutativa. Concluímos com sugestões de trabalhos futuros relacionados controlabilidade em dimensão infinita e a à dinâmica de sistemas quânticos sujeitos a medição. / The main theme of this work is to study the dynamics of quantum systems from the perspective of the theory of dynamical systems, in particular, from the point of view of control theory. The main topics covered are (i) the analysis of controllability of quantum systems in finite and infinite dimensions and (ii) the general theory of measurement of quantum systems in order to get to the stochastic differential equations associated with systems subject to continuous measurement. Regarding the controllability of closed quantum dynamical systems in finite dimension, the standard results from the literature were presented: the application of group theory and Lie algebra to this class of dynamical systems. In infinite dimensions, the direct application of geometric control techniques is no longer possible. In infinite dimensional state spaces the mathematical analysis techniques need to be more sophisticated, there are problems related to convergence and issues related to unbounded operators. The main results known from the literature were presented and their limitations discussed. Then an analogy was performed between linear classical systems and infinite dimensional quantum dynamical systems whose dynamics is restricted to a commutative algebra of self adjoint operators. We also note that the controllability of some quantum systems in infinite dimension is associated with nonlinear Hamiltonians. We note, in particular, that the commutative quantum systems are associated with nonlinear operators. With respect to the measurement theory of quantum systems, we start in the structure of the theory of open quantum systems in order to obtain the dynamical equation governing the evolution of non-conservative systems. In parallel, we conducted an analysis of the mathematical description of the measurement experiments in quantum systems from the orthogonal measurement postulates to the description of continuous measurement. We noted that the stochastic Schrödinger equation associated with a continuous measurement process has as its infinitesimal generator a Hamiltonian nonlinear in the self-adjoint operator associated with the observable. Then a discussion about the implications of continuous measurement processes in the dynamics of quantum systems was conducted, analyzing possible impacts on its controllability. We also looked at the particular case of quantum systems whose operators associated with their dynamics and their observable are restricted to the same commutative algebra. We cluded with suggestions for future work related to controllability in infinite dimension and the dynamics of quantum systems subjected to measurement processes.
46

Controlabilidade de sistemas de hardware para computação quântica: definição do problema e discussão de aspectos analíticos e numéricos. / Controllability of hardware systems for quantum computing: problem possing and discussion of analytical and numerical topics.

Leandro Dias Cunha 21 March 2016 (has links)
Este trabalho possui como tema principal o estudo da dinâmica de sistemas quânticos da perspectiva da teoria de sistemas dinâmicos, em particular, do ponto de vista da teoria de controle. Os principais tópicos abordados são (i) a análise da controlabilidade dos sistemas quânticos em dimensão finita e infinita e (ii) a teoria generalizada de medição de sistemas quânticos com o objetivo de obter as equações diferenciais estocásticas associadas a sistemas submetidos a processos de medição contínuos. Com relação à controlabilidade de sistemas dinâmicos quânticos fechados em dimensão finita resgatamos da literatura os resultados, já consolidados, da aplicação da teoria de grupos e álgebras de Lie aos essa classe de sistemas dinâmicos. Em dimensão infinita, a aplicação direta das técnicas de controle geométrico já não ocorre diretamente. Em espaços de estados de dimensão infinita as técnicas de análise matemática devem ser mais sofisticadas, há problemas relacionados à convergência e problemas relacionados a operadores não limitados. Os principais resultados conhecidos da literatura são apresentados e suas limitações são discutidas. Realizamos em seguida uma analogia entre sistemas clássicos lineares e sistemas dinâmicos quânticos de dimensão infinita cuja dinâmica é restrita a uma álgebra de operadores auto adjuntos comutativa. Observamos também que a controlabilidade de alguns sistemas quânticos em dimensão infinita está associada a Hamiltonianos não lineares. Notamos, em particular, que os sistemas quânticos comutativos estão associados a operadores não lineares. Com relação à teoria de medição de sistemas quânticos, partimos da teoria de sistemas quânticos abertos para a obtenção da equação dinâmica que rege a evolução dos sistemas não conservativos. Em paralelo, realizamos uma análise da descrição matemáticas dos experimentos de medição em sistemas quânticos desde os postulados de medição ortogonal até a descrição de processos de medição contínuos. Observamos que a equação de Schrödinger estocástica associada a um processo de medição contínuo possui como gerador infinitesimal um Hamiltoniano não linear no operador auto adjunto associado ao observável. Realizamos em seguida uma discussão a respeito das implicações de processos de medição contínuos na dinâmica de sistemas quânticos, analisando possíveis impactos em sua controlabilidade. Analisamos também o caso particular de sistemas quânticos cujos operadores associados a sua dinâmica e a seus observáveis estão restritos a uma mesma álgebra comutativa. Concluímos com sugestões de trabalhos futuros relacionados controlabilidade em dimensão infinita e a à dinâmica de sistemas quânticos sujeitos a medição. / The main theme of this work is to study the dynamics of quantum systems from the perspective of the theory of dynamical systems, in particular, from the point of view of control theory. The main topics covered are (i) the analysis of controllability of quantum systems in finite and infinite dimensions and (ii) the general theory of measurement of quantum systems in order to get to the stochastic differential equations associated with systems subject to continuous measurement. Regarding the controllability of closed quantum dynamical systems in finite dimension, the standard results from the literature were presented: the application of group theory and Lie algebra to this class of dynamical systems. In infinite dimensions, the direct application of geometric control techniques is no longer possible. In infinite dimensional state spaces the mathematical analysis techniques need to be more sophisticated, there are problems related to convergence and issues related to unbounded operators. The main results known from the literature were presented and their limitations discussed. Then an analogy was performed between linear classical systems and infinite dimensional quantum dynamical systems whose dynamics is restricted to a commutative algebra of self adjoint operators. We also note that the controllability of some quantum systems in infinite dimension is associated with nonlinear Hamiltonians. We note, in particular, that the commutative quantum systems are associated with nonlinear operators. With respect to the measurement theory of quantum systems, we start in the structure of the theory of open quantum systems in order to obtain the dynamical equation governing the evolution of non-conservative systems. In parallel, we conducted an analysis of the mathematical description of the measurement experiments in quantum systems from the orthogonal measurement postulates to the description of continuous measurement. We noted that the stochastic Schrödinger equation associated with a continuous measurement process has as its infinitesimal generator a Hamiltonian nonlinear in the self-adjoint operator associated with the observable. Then a discussion about the implications of continuous measurement processes in the dynamics of quantum systems was conducted, analyzing possible impacts on its controllability. We also looked at the particular case of quantum systems whose operators associated with their dynamics and their observable are restricted to the same commutative algebra. We cluded with suggestions for future work related to controllability in infinite dimension and the dynamics of quantum systems subjected to measurement processes.
47

Complexity of the big and small

Cejnarova, Andrea 03 1900 (has links)
Thesis (MA (Philosophy))--University of Stellenbosch, 2005. / It seems to be a priori impossible to formulate any general theory or model that encompasses all of the properties of complexity. So, one must make do with partial solutions. A possible approach we propose is to take inspiration from quantum theory, since there seems to be a strong analogy between complex systems and quantum systems. Although we do not propose any literal application of quantum mechanical formalism to complexity, we suggest that the language of quantum mechanics is already so well developed - and for a much wider spectrum of problems than most theories - that it can serve as a model for complexity theory. There are many problems common to both complex systems and quantum systems and we suggest that it might be useful to test the applicability of aspects of the “language” of quantum mechanics to a general complex system. What we suggest here is an interdisciplinary talk led between the natural sciences and philosophy, which we believe is the only way in which to deal with complexity “as such”.
48

Interference and correlation effects in multimode quantum systems : multimode systems

Dedes, Christos January 2009 (has links)
The purpose of this thesis is the theoretical study of interference and correlation effects in multimode and continuum mode quantum systems. We are concerned with interference effects in multiport devices which in a sense are generalised Mach-Zehnder interferometers. It is shown how these multimode devices can be employed for the study of negative result and interaction free measurements. Interference and coherence effects are also studied in relation to the radiation fields generated by atoms through the process of spontaneous emission. Besides first order interference, higher order coherence effects are investigated with the aid of Glauber's photodetection theory and it is found that detectors that lie in spacelike regions may display nonclassical correlations under certain conditions. It is well known that the vanishing of field commutators between regions that cannot be connected by subluminal signals reflects the locality of quantum field theory. But is it possible that these spacelike regions exhibit correlations that violate Bell type inequalities? This is the main question and principal concern of the thesis and the answer is affirmative, nonclassical correlations between spacelike regions are indeed possible. A scheme of four detectors that lie in spacelike points was also studied. In this case we do not consider the radiation field but a free scalar field in vacuum state. Nevertheless the virtual quanta of this field may induce nonclassical correlations if the intervals between the detectors are spacelike but small enough. The fundamental reason for this fact is the nonvanishing of the Feynman propagator outside the light cone. Since this propagator is decaying expotentially with the distance it is demonstrated that for large spacelike intervals field correlations obey classical inequalities. We should also note that different inertial observers will agree on the violation or not of these inequalities since the results are manifestly Lorentz invariant.
49

Deslocalização e superfluidez em condensados atômicos de Bose-Einstein / Delocalization and superfluidity in Bose- Einstein condensates of atomic gases.

Pinheiro, Fernanda Raquel 01 June 2010 (has links)
O presente trabalho apresenta o estudo das propriedades da condensação de Bose-Einstein e da superfluidez em um sistema bosônico disposto em um arranjo unidimensional de potenciais periódicos em formato de anel. O Hamiltoniano efetivo usual em termos dos operadores de campo é implementado na representação construída em termos das funções de Bloch da primeira banda e o problema é resolvido por meio da sua diagonalização através de métodos numéricos. No limite de hopping pequeno, este modelo é essencialmente equivalente à representação usual do modelo de Bose-Hubbard, mas incorpora efeitos adicionais através das energias de Bloch de partícula independente e dos elementos da matriz de dois corpos na situação em que o hopping é grande [19]. Através da inclusão de rotação no sistema, as energias de partícula independente são forçadas a depender da velocidade angular. Isto implica, correspondentemente, uma dependência da velocidade angular nas funções de onda de partícula independente e nos resultados de muitos corpos obtidos através da diagonalização do Hamiltoniano. Com o objetivo de estudar a superfluidez, o critério de dois fluidos é empregado e através de resultados numéricos obtêm-se a variação da fração de superfluido com o quadrado da velocidade angular. Ainda, considera-se aqui uma expressão perturbativa para o parâmetro inercial do sistema expresso em termos das excitações do sistema sem rotação, o que permite relacionar as energias do sistema com rotação com aquelas do sistema sem rotação. Isto é particularmente interessante para obter a fração de superfluido em termos da informação espectral do sistema sem rotação. Resultados semelhantes podem ser encontrados através da definição de superfluido baseada na resposta do sistema a uma variação de fase, imposta através de condições de contorno torcidas [30, 33], mas com a diferença de que os desenvolvimentos aqui não fazem uso da hipótese do modo condensado. De maneira geral, os resultados numéricos obtidos indicam, que pelo menos para este sistema, as frações de superfluido e condensado são quantidades sem relação direta, sugerindo então que mesmo para sistemas gasosos diluídos a idéia de que a superfluidez é uma consequência da condensação de Bose-Einstein deve ser considerada com mais cuidado. / In this work we study the properties of Bose-Einstein condensation and superfluidity in a finite bosonic system in a 1-dimensional ring with a periodic potential under rotation. The usual field effective Hamiltonian is implemented in a representation constructed in terms of the first band Bloch functions and the problem is solved by numeric diagonalization. In the limit of small hopping, this model is essentially equivalent to the quasi-momentum representation of the usual Bose-Hubbard model but incorporates additional effects via Bloch single particle energies and two-body matrix elements in the case of large hopping [19]. By including rotation in the system we force the single particle energies to be a function of the angular velocity. This implies a corresponding angular velocity dependence of the single particle wavefunctions and many-body diagonalization results. In order to study superfluidity, we consider the two fluid criterion. Numerical results for the superfluid fraction involving the change of in rinsic ground state energy with the square of the angular velocity are obtained. We also consider a perturbative expression for the system inertial parameter expressed in terms of the excitation spectrum of the non rotating system, which enables us to relate the energies in the rotating system to the ones in the system without rotation. This is particularly interesting for obtaining superfluid fraction in terms of spectral information of the non rotating system. Similar results can be found by using the definition of superfluid fraction based on the response of the system to a phase variation imposed by means of twisted boundary conditions [30, 33], but with the difference that our developments do not assume the hypothesis of a condensate mode. Our numerical results indicate that in this system condensate and superfluid fractions are quite unrelated in terms of parameter values, indicating that even for dilute gases the concept that superfluidity is a consequence of Bose-Einstein condensation should be considered more carefully.
50

Coherence protection in coupled qubit systems

Cammack, Helen Mary January 2018 (has links)
Decoherence is a major barrier to the implementation of quantum technologies. Theoretical techniques for understanding decoherence in composite systems have traditionally been focused on systems with distinguishable emission spectra, where measuring the frequency of an emitted photon allows one to determine which process took place. Here the photon contains information about the state of the system. On the other hand, systems with indistinguishable spectra do not necessarily completely reveal information about the state of the system when a photon is emitted. It can be impossible to say for certain which of two nearly degenerate transitions has occurred just by measuring the photon's frequency. It is then possible to preserve information within the system throughout the decay process. In this Thesis we show that indistinguishable spectra can lead to protected coherences within one part of a coupled quantum system, even as another part decays. We develop a zero-temperature exact approach for modelling such systems, and compare it to the microscopically derived Born-Markov master equation. This comparison helps us to understand the range of validity of the Markovian approximation. We use this understanding to extend the master equation approach to finite temperature within the Markovian regime, and we compare its high temperature results to a semiclassical model. We examine the physical conditions required for coherence protection, and remarkably we find that heating the system can improve coherence protection. Similarly, increasing the decay rate of the unprotected part of the coupled system can also enhance the coherence of the protected part. These effects are the results of linewidth broadening and thus greater spectral indistinguishability. The findings in this Thesis are of interest to both those seeking to engineer hybrid quantum systems and those seeking to develop theoretical techniques for dealing with the decoherence of composite quantum systems.

Page generated in 0.054 seconds