• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 2
  • Tagged with
  • 14
  • 14
  • 14
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sur l’origine de l’interdiffusion de puits quantiques par laser uv dans des heterostructures de semi-conducteurs iii-v / On the origin of uv laser-induced quantum well intermixing in iii-v semiconductor heterostructures

Liu, Neng January 2014 (has links)
Résumé : Les circuits photoniques intégrés qui combinent des dispositifs photoniques pour la génération, la détection, la modulation, l'amplification, la commutation et le transport de la lumière dans une puce, ont été rapportés comme étant une innovation technologique importante qui simplifie la conception du système optique et qui réduit l'espace et la consommation de l'énergie en améliorant ainsi la fiabilité. La capacité de modifier la bande interdite des zones sélectives des différents dispositifs photoniques à travers la puce est la clé majeure pour le développement de circuits photoniques intégrés. Comparé à d'autres méthodes d’épitaxie, l’interdiffusion de puits quantiques a attiré beaucoup d'intérêt en raison de sa simplicité et son efficacité en accordant la bande interdite durant le processus de post-épitaxie. Cependant, l’interdiffusion de puits quantiques a subi des problèmes reliés au manque de précision pour modifier convenablement la bande interdite ciblée et à l’incontrôlabilité de l’absorption des impuretés au cours du processus qui peut dégrader la qualité du matériel interdiffusé. Dans cette thèse, nous avons utilisé les lasers excimer pour créer des défauts à proximité de la surface (~ 10 nm) des microstructures à base de puits quantiques III-V (par exemple InP et GaAs) et pour induire l’interdiffusion après le recuit thermique. L'irradiation par les lasers excimer (ArF et KrF) des microstructures à puits quantiques a été réalisée dans différents environnements, y compris l'air, l'eau déionisée, les couches diélectriques (SiO2 et Si3N4) et les couches d’InOx. Pour proposer un bon contrôle de la technique d’interdiffusion de puits quantiques par laser excimer, nous avons étudié la génération et la diffusion de défauts de surface en utilisant différentes méthodes de caractérisation de surface/interface, comme l'AFM, SEM, XPS et SIMS qui ont été utilisées pour analyser la modification de la morphologie de surface/interface et la modification chimique de la microstructure de ces puits quantiques. La qualité des microstructures à puits quantiques étudiées a été représentée par des mesures de photoluminescence et de luminescence des diodes lasers ainsi fabriqués. Les résultats montrent que le laser excimer induit des quantités d'oxydes de surface dans les surfaces des microstructure à puits quantiques InP/InGaAs/InGaAsP dans l'air et des impuretés d'oxygène des couches d'oxydes diffusées dans la région active de la microstructure lors du recuit, ce qui améliore l’interdiffusion, mais réduit l'intensité de la photoluminescence. Par contre, l’irradiation dans un environnement d'eau déionisée n’a pas démontré de diffusion des impuretés évidentes d'un excès d'oxygène vers les régions actives, mais la stœchiométrie de surface a été restaurée après l’interdiffusion. L’InOx a été trouvé avec un grand coefficient de dilatation thermique dans la microstructure interdiffusée qui était supposée d’augmenter la contrainte de compression dans la région active et ainsi d’augmenter l'intensité de photoluminescence de 10 fois dans l’échantillon irradié dans l'eau déionisée. Concernant les microstructures avec une couche diélectrique, la modification de la bande interdite a été toujours réalisée sur des échantillons dont les couches diélectriques ont été irradiées et la surface de InP a été modifiée par le laser excimer. Pour l'échantillon avec une couche de 243 nm de SiO2, les variations de la photoluminescence ont été mesurées sans l’ablation de cette couche de SiO2 lors de l'irradiation par le laser KrF. Cependant, la morphologie de l'interface d’InP a été modifiée, les oxydes d'interface ont été générés et les impuretés d'oxygène se sont diffusées à l'intérieur des surfaces irradiées. Les améliorations de l’interdiffusion dans les deux surfaces non irradiées et irradiés de l'échantillon couvert de couche d’InOx ont démontré l'importance des oxydes dans l’interdiffusion des puits quantiques. Les diodes laser fabriquées à partir d’un matériau interdiffusé par un laser KrF ont montré un seuil de courant comparable à celui des matériaux non interdiffusés avec un décalage de photoluminescence de 100 nm. En combinant un masque d'aluminium, nous avons créé un déplacement uniforme de photoluminescence de 70 nm sur une matrice rectangulaire de 40 μm x 200 μm ce qui présente un potentiel d’application de l’interdiffusion des puits quantiques par les lasers excimer dans les circuits photoniques intégrés. En outre, les lasers excimer ont été utilisés pour créer des structures de nano-cônes auto-organisées sur des surfaces de microstructure de InP/InGaAs/InGaAsP en augmentant l'intensité de PL par ~ 1.4 fois. Les lasers excimer ont été aussi utilisés pour modifier la mouillabilité sélective des zones d’une surface de silicium par une modification chimique de surface induite par laser dans différents milieux liquides. Ainsi, la fluorescence des nanosphères a été réussie pour des fonctions de configuration spécifique avec une surface de silicium. // Abstract : Photonic integrated circuits (PICs) which combine photonic devices for generation, detection, modulation, amplification, switching and transport of light on a chip have been reported as a significant technology innovation that simplifies optical system design, reduces space and power consumption, improves reliability. The ability of selective area modifying the bandgap for different photonic devices across the chip is the important key for PICs development. Compared with other growth methods, quantum well intermixing (QWI) has attracted amounts of interest due to its simplicity and effectiveness in tuning the bandgap in post-growth process. However, QWI has suffered problems of lack of precision in achieving targeted bandgap modification and uncontrollable up-taking of impurities during process which possibly degrade the quality of intermixed material. In this thesis, we have employed excimer laser to create surface defects in the near surface region (~ 10 nm) of III-V e.g. InP and GaAs, based QW microstructure and then annealing to induce intermixing. The irradiation by ArF and KrF excimer lasers on the QW microstructure was carried out surrounded by different environments, including air, DI water, dielectric layers (SiO2 and Si3N4) and InOx coatings. To propose a more controllable UV laser QWI technique, we have studied surface defects generation and diffusion with various surface/interface characterization methods, like AFM, SEM, XPS and SIMS, which were used to analyse the QW surface/interface morphology and chemical modification during QWI. The quality of processed QW microstructure was represented by photoluminescence measurements and luminescence measurements of fabricated laser diodes. The results shows that excimer laser induced amounts of surface oxides on the InP/InGaAs/InGaAsP microstructure surface in air and the oxygen impurities from oxides layer diffused to the active region of the QW microstructure during annealing, which enhance intermixing but also reduce the PL intensity. When irradiated in DI water environment, no obvious excessive oxygen impurities were found to diffuse to the active regions and the surface stoichiometry has been restored after intermixing. InOx with large coefficient of thermal expansion was found inside the intermixed QW microstructure, which was supposed to increase the compressive strain in active region and enhance the PL intensity to maximum 10 times on sample irradiated in DI water. On microstructure coated with dielectric layers, bandgap modifications were always found on samples whose dielectric layers were ablated and InP surface was modified by excimer laser. On sample coated with 243 nm SiO2 layer, the PL shifts were found on sample without ablation of the SiO2 layer when irradiated by KrF laser. However, the InP interface morphology was modified, interface oxides were generated and oxygen impurities have diffused inside on the irradiated sites. The enhancements of interdiffusion on both non irradiated and irradiated sites of sample coated with InOx layer have verified the importance of oxides in QWI. The laser diodes fabricated from KrF laser intermixed material have shown comparable threshold current density with as grown material with PL shifted by 133 nm. Combined aluminum mask, we have created uniform 70 nm PL shifts on 40 μm x 200 μm rectangle arrays which presents UV laser QWI potential application in PICs. In addition, excimer lasers have been used to create self organized nano-cone structures on the surface of InP/InGaAs/InGaAsP microstructure and enhance the PL intensity by ~1.4x. Excimer lasers have selective area modified wettability of silicon surface based on laser induced surface chemical modification in different liquid environments. Then the fluorescence nanospheres succeeded to specific pattern functions with silicon surface.
12

Nano-ingéniérie de bande interdite des semiconducteurs quantiques par recuit thermique rapide au laser

Stanowski, Radoslaw Wojciech January 2011 (has links)
The ability to fabricate semiconductor wafers with spatially selected regions of different bandgap material is required for the fabrication of monolithic photonic integrated circuits (PIC's). Although this subject has been studied for three decades and many semiconductor engineering approaches have been proposed, the problem of achieving reproducible results has constantly challenged scientists and engineers. This concerns not only the techniques relaying on multiple sequential epitaxial growth and selective area epitaxy, but also the conventional quantum well intermixing (QWI) technique that has been investigated as a post-growth approach for bandgap engineering. Among different QWI techniques, those based on the use of different lasers appear to be attractive in the context of high-precision and the potential for cost-effective bandgap engineering. For instance, a tightly focused beam of the infrared (IR) laser could be used for the annealing of small regions of a semiconductor wafer comprising different quantum well (QW) or quantum dot (QD) microstructures. The precision of such an approach in delivering wafers with well defined regions of different bandgap material will depend on the ability to control the laser-induced temperature, dynamics of the heating-cooling process and the ability to take advantage of the bandgap engineering diagnostics. In the frame of this thesis, I have investigated IR laser-induced QWI processes in QW wafers comprising GaAs/A1GaAs and InP/InGaAsP microstructures and in InAs QD microstructures grown on InP substrates. For that purpose, I have designed and set up a 2-laser system for selective area rapid thermal annealing (Laser-RTA) of semiconductor wafers. The advantage of such an approach is that it allows carrying out annealing with heating-cooling rates unattainable with conventional RTA techniques, while a tightly focused beam of one of the IR lasers is used for `spot annealing'. These features have enabled me to introduce a new method for iterative bandgap engineering at selected areas (IBESA) of semiconductor wafers. The method proves the ability to deliver both GaAs and InP based QW/QD wafers with regions of different bandgap energy controlled to better than « 1nm of the spectral emission wavelength. The IBESA technique could be used for tuning the optical characteristics of particular regions of a QW wafer prepared for the fabrication of a PIC. Also, this approach has the potential for tuning the emission wavelength of individual QDs in wafers designed, e.g., for the fabrication of single photon emitters. In the 1st Chapter of the thesis, I provide a short review of the literature on QWI techniques and I introduce the Laser - RTA method. The 2nd Chapter is devoted to the description of the fundamental processes related to the absorption of laser light in semiconductors. I also discuss the results of the finite element method applied for modeling and semi-quantitative description of the Laser - RTA process. Details of the experimental setup and developed procedures are provided in the 3rd Chapter. The results concerning direct bandgap engineering and iterative bandgap engineering are discussed in the 4th and 5th Chapters, respectively.
13

Sur l’origine de l’interdiffusion de puits quantiques par laser uv dans des heterostructures de semi-conducteurs iii-v

Liu, Neng January 2014 (has links)
Résumé : Les circuits photoniques intégrés qui combinent des dispositifs photoniques pour la génération, la détection, la modulation, l'amplification, la commutation et le transport de la lumière dans une puce, ont été rapportés comme étant une innovation technologique importante qui simplifie la conception du système optique et qui réduit l'espace et la consommation de l'énergie en améliorant ainsi la fiabilité. La capacité de modifier la bande interdite des zones sélectives des différents dispositifs photoniques à travers la puce est la clé majeure pour le développement de circuits photoniques intégrés. Comparé à d'autres méthodes d’épitaxie, l’interdiffusion de puits quantiques a attiré beaucoup d'intérêt en raison de sa simplicité et son efficacité en accordant la bande interdite durant le processus de post-épitaxie. Cependant, l’interdiffusion de puits quantiques a subi des problèmes reliés au manque de précision pour modifier convenablement la bande interdite ciblée et à l’incontrôlabilité de l’absorption des impuretés au cours du processus qui peut dégrader la qualité du matériel interdiffusé. Dans cette thèse, nous avons utilisé les lasers excimer pour créer des défauts à proximité de la surface (~ 10 nm) des microstructures à base de puits quantiques III-V (par exemple InP et GaAs) et pour induire l’interdiffusion après le recuit thermique. L'irradiation par les lasers excimer (ArF et KrF) des microstructures à puits quantiques a été réalisée dans différents environnements, y compris l'air, l'eau déionisée, les couches diélectriques (SiO2 et Si3N4) et les couches d’InOx. Pour proposer un bon contrôle de la technique d’interdiffusion de puits quantiques par laser excimer, nous avons étudié la génération et la diffusion de défauts de surface en utilisant différentes méthodes de caractérisation de surface/interface, comme l'AFM, SEM, XPS et SIMS qui ont été utilisées pour analyser la modification de la morphologie de surface/interface et la modification chimique de la microstructure de ces puits quantiques. La qualité des microstructures à puits quantiques étudiées a été représentée par des mesures de photoluminescence et de luminescence des diodes lasers ainsi fabriqués. Les résultats montrent que le laser excimer induit des quantités d'oxydes de surface dans les surfaces des microstructure à puits quantiques InP/InGaAs/InGaAsP dans l'air et des impuretés d'oxygène des couches d'oxydes diffusées dans la région active de la microstructure lors du recuit, ce qui améliore l’interdiffusion, mais réduit l'intensité de la photoluminescence. Par contre, l’irradiation dans un environnement d'eau déionisée n’a pas démontré de diffusion des impuretés évidentes d'un excès d'oxygène vers les régions actives, mais la stœchiométrie de surface a été restaurée après l’interdiffusion. L’InOx a été trouvé avec un grand coefficient de dilatation thermique dans la microstructure interdiffusée qui était supposée d’augmenter la contrainte de compression dans la région active et ainsi d’augmenter l'intensité de photoluminescence de 10 fois dans l’échantillon irradié dans l'eau déionisée. Concernant les microstructures avec une couche diélectrique, la modification de la bande interdite a été toujours réalisée sur des échantillons dont les couches diélectriques ont été irradiées et la surface de InP a été modifiée par le laser excimer. Pour l'échantillon avec une couche de 243 nm de SiO2, les variations de la photoluminescence ont été mesurées sans l’ablation de cette couche de SiO2 lors de l'irradiation par le laser KrF. Cependant, la morphologie de l'interface d’InP a été modifiée, les oxydes d'interface ont été générés et les impuretés d'oxygène se sont diffusées à l'intérieur des surfaces irradiées. Les améliorations de l’interdiffusion dans les deux surfaces non irradiées et irradiés de l'échantillon couvert de couche d’InOx ont démontré l'importance des oxydes dans l’interdiffusion des puits quantiques. Les diodes laser fabriquées à partir d’un matériau interdiffusé par un laser KrF ont montré un seuil de courant comparable à celui des matériaux non interdiffusés avec un décalage de photoluminescence de 100 nm. En combinant un masque d'aluminium, nous avons créé un déplacement uniforme de photoluminescence de 70 nm sur une matrice rectangulaire de 40 μm x 200 μm ce qui présente un potentiel d’application de l’interdiffusion des puits quantiques par les lasers excimer dans les circuits photoniques intégrés. En outre, les lasers excimer ont été utilisés pour créer des structures de nano-cônes auto-organisées sur des surfaces de microstructure de InP/InGaAs/InGaAsP en augmentant l'intensité de PL par ~ 1.4 fois. Les lasers excimer ont été aussi utilisés pour modifier la mouillabilité sélective des zones d’une surface de silicium par une modification chimique de surface induite par laser dans différents milieux liquides. Ainsi, la fluorescence des nanosphères a été réussie pour des fonctions de configuration spécifique avec une surface de silicium. // Abstract : Photonic integrated circuits (PICs) which combine photonic devices for generation, detection, modulation, amplification, switching and transport of light on a chip have been reported as a significant technology innovation that simplifies optical system design, reduces space and power consumption, improves reliability. The ability of selective area modifying the bandgap for different photonic devices across the chip is the important key for PICs development. Compared with other growth methods, quantum well intermixing (QWI) has attracted amounts of interest due to its simplicity and effectiveness in tuning the bandgap in post-growth process. However, QWI has suffered problems of lack of precision in achieving targeted bandgap modification and uncontrollable up-taking of impurities during process which possibly degrade the quality of intermixed material. In this thesis, we have employed excimer laser to create surface defects in the near surface region (~ 10 nm) of III-V e.g. InP and GaAs, based QW microstructure and then annealing to induce intermixing. The irradiation by ArF and KrF excimer lasers on the QW microstructure was carried out surrounded by different environments, including air, DI water, dielectric layers (SiO2 and Si3N4) and InOx coatings. To propose a more controllable UV laser QWI technique, we have studied surface defects generation and diffusion with various surface/interface characterization methods, like AFM, SEM, XPS and SIMS, which were used to analyse the QW surface/interface morphology and chemical modification during QWI. The quality of processed QW microstructure was represented by photoluminescence measurements and luminescence measurements of fabricated laser diodes. The results shows that excimer laser induced amounts of surface oxides on the InP/InGaAs/InGaAsP microstructure surface in air and the oxygen impurities from oxides layer diffused to the active region of the QW microstructure during annealing, which enhance intermixing but also reduce the PL intensity. When irradiated in DI water environment, no obvious excessive oxygen impurities were found to diffuse to the active regions and the surface stoichiometry has been restored after intermixing. InOx with large coefficient of thermal expansion was found inside the intermixed QW microstructure, which was supposed to increase the compressive strain in active region and enhance the PL intensity to maximum 10 times on sample irradiated in DI water. On microstructure coated with dielectric layers, bandgap modifications were always found on samples whose dielectric layers were ablated and InP surface was modified by excimer laser. On sample coated with 243 nm SiO2 layer, the PL shifts were found on sample without ablation of the SiO2 layer when irradiated by KrF laser. However, the InP interface morphology was modified, interface oxides were generated and oxygen impurities have diffused inside on the irradiated sites. The enhancements of interdiffusion on both non irradiated and irradiated sites of sample coated with InOx layer have verified the importance of oxides in QWI. The laser diodes fabricated from KrF laser intermixed material have shown comparable threshold current density with as grown material with PL shifted by 133 nm. Combined aluminum mask, we have created uniform 70 nm PL shifts on 40 μm x 200 μm rectangle arrays which presents UV laser QWI potential application in PICs. In addition, excimer lasers have been used to create self organized nano-cone structures on the surface of InP/InGaAs/InGaAsP microstructure and enhance the PL intensity by ~1.4x. Excimer lasers have selective area modified wettability of silicon surface based on laser induced surface chemical modification in different liquid environments. Then the fluorescence nanospheres succeeded to specific pattern functions with silicon surface.
14

Laser induced quantum well intermixing : reproducibility study and fabrication of superluminescent diodes / Interdiffusion de puits quantiques induite par laser : étude de la reproductibilité et fabrication de diodes superluminescentes

Béal, Romain January 2015 (has links)
Abstract : Photonic Integrated Circuits (PIC) are of tremendous interest for photonics system in order to reduce their power consumption, size, fabrication cost and improve their reliability of fiber optics linked discrete component architecture. However, unlike for microelectronics, in photonics different heterostructures are required depending on the type of device (laser sources, detectors, modulators, passive waveguides…). Therefore photonics integration needs a technology able to produce multiple bandgap energy wafers with a suitable final material quality in a reproducible manner and at a competitive cost: a technological challenge that has not been completely solved yet. Quantum Well Intermixing (QWI) is a post growth bandgap tuning process based on the localized and controlled modification of quantum well composition profile that aims to address these matters. UV laser induced QWI (UV-Laser-QWI) relies on high power excimer laser to introduce point defects near the heterostructure surface. By adjusting the laser beam shape, position, fluence and the number of pulse delivered, the different regions to be intermixed can be defined prior to a rapid thermal annealing step that will activate the point defects diffusion across the heterostructure and generate quantum well intermixing. UV-LaserQWI presents the consequent advantage of allowing the patterning of multiple bandgap regions without relying on photolithographic means, thus offering potentially larger versatility and time efficiency than other QWI processes. UV-Laser-QWI reproducibility was studied by processing samples from an InGaAs/InGaAsP/InP 5 quantum well heterostructure emitting at 1.55 µm. 217 different sites on 12 samples were processed with various laser doses. The quantum well intermixing generated was then characterized by room temperature photoluminescence (PL) mapping. Under those experimental conditions, UV-Laser-QWI was able to deliver heterostructures with a PL peak wavelength blue shift controlled within a +/- 15 % range up to 101.5nm. The annealing temperature proved to be the most critical parameter as the PL peak wavelength in the laser irradiated areas varied at the rate of 1.8 nm per degree Celsius. When processing a single wafer, thus limiting the annealing temperature variations, the bandgap tuned regions proved to be deliverable within ± 7.9%, hence establishing the potential of UV-Laser-QWI as a reproducible bandgap tuning solution. The UV-Laser-QWI was used to produce multiple bandgap wafers for the fabrication of broad spectrum superluminescent diodes (SLD). Multiple bandgap energy profiles were tested and their influence on the SLDs’ performances was measured. The most favorable bandgap modifications for the delivery of a very broadband emitting SLD were analyzed, as well as the ones to be considered for producing devices with a flat top shaped spectrum. The intermixed SLDs spectra reached full width at half maximum values of 100 nm for a relatively flattop spectrum which compare favorably with the ≈ 40nm of reference devices at equal power. The light-intensity characteristics of intermixed material made devices were very close to the ones of reference SLD made from as-grown material which let us think that the alteration of material quality by the intermixing process was extremely limited. These results demonstrated that the suitability of UV-Laser-QWI for concrete application to photonic devices fabrication. Finally, an alternative laser QWI technique was evaluated for SLD fabrication and compared to the UV laser based one. IR-RTA relies on the simultaneous use of two IR laser to anneal local region of a wafer: a 980 nm laser diode coupled to a pigtailed fiber for the wafer background heating and a 500 µm large beam TEM 00 Nd:YAG laser emitting at 1064 nm to anneal up to intermixing temperature a localized region of the wafer. The processed samples exhibited a 33 % spectral width increase of the spectrum compare to reference device at equal power of 1.5 mW. However, the PL intensity was decreased by up to 60 % in the intermixed regions and the experiments proved the difficulty to avoid these material degradations of material quality with IR-RTA. / Résumé : L’intégration de circuit photonique vise à réduire la consommation énergétique, la taille, le coût et les risques de panne des systèmes photoniques traditionnels faits de composants distincts connectés par fibre optique. Cependant, contrairement à la microélectronique, des hétérostructures spécifiques sont requises pour chaque composant : lasers, détecteurs, modulateurs, guides d’ondes… De cette constatation découle le besoin d’une technologie capable de produire des gaufres d’hétérostructures III/V de qualité à plusieurs énergies de gap, et ce de façon reproductible pour un coût compétitif. Aucune des techniques actuelles ne répond pour l’instant pleinement à tous ces impératifs. L’interdiffusion de puits quantique (IPQ) est un procédé post épitaxie basé sur la modification locale de la composition des puits quantiques. L’IPQ induite par laser UV (IPQ-UV) est basée sur l’utilisation de laser excimer (Argon-Fluor émettant à 193 nm ou Krypton-Fluor à 248 nm) pour introduire des défauts ponctuels à la surface de l’hétérostructure. En ajustant la taille du faisceau, sa position, son énergie ainsi que le nombre d’impulsions laser délivrées à la surface du matériau, on peut définir les régions à interdiffuser ainsi que leur futur degré d’interdiffusion. Un recuit de la gaufre active ensuite la diffusion des défauts et par conséquent l’interdiffusion du puits. L’IPQ-UV présente l’avantage considérable de se passer de photolithographie pour définir les zones de différentes énergies de gap, diminuant ainsi la durée et potentiellement le coût du procédé. La reproductibilité de l’IPQ-UV a été étudiée pour l’interdiffusion d’une structure à 5 puits quantiques d’InGaAs/InGaAsP/InP émettant à 1.55 µm. 217 régions sur 12 échantillons ont été irradiés par un laser KrF avec des nombres d’impulsion variables selon les sites et avec une densité d’énergie constante de 155 mJ/cm². Les modifications de la structure générée par ce traitement furent ensuite mesurées par cartographie en photoluminescence (PL) à température ambiante. L’analyse des données montra que l’IPQ-UV permet un contrôle du décalage vers le bleu du pic de PL à +/- 15 % jusqu’à 101.5nm. La température du recuit est apparue comme le paramètre crucial du procédé, puisque la longueur d’onde du pic de PL des zones interdiffusées varie de 1.8 nm par degré Celsius. En considérant les sites irradiés sur une seule gaufre, c’est à dire en s’affranchissant des variations de température entre deux recuits de notre système, la variation du pic de PL est contrôlable dans une plage de ± 7.9%. Ces résultats démontrent le potentiel de l’IPQ-UV en tant que procédé reproductible de production de gaufre à plusieurs énergies de gap. L’IPQ-UV a été utilisé pour la fabrication de diodes superluminescentes (DSLs). Différents type de structure à énergie de gap multiple ont été testés et leurs influences sur les performances spectrales des diodes évalués. Les spectres des DSLs faites de matériau interdiffusé ont atteint des largeurs à mi-hauteur dépassant les 100 nm (jusqu’à 132 nm), ce qui est une amélioration conséquente des ≈ 40nm des DSLs de référence à puissance égale. Les caractéristiques intensité–courant des DSLs interdiffusés furent mesurées comme étant très proches de celle des dispositifs de référence faits de matériau brut, ce qui suggère que l’IPQ-UV n’a pas ou très peu altéré la qualité du matériau initial. Ces résultats prouvent la capacité de l’IPQ-UV à être utilisé pour la fabrication de dispositifs photoniques. Une technique alternative d’IPQ par laser a été évaluée et comparée à l’IPQ-UV pour la fabrication de DSL. Le recuit rapide par laser IR est basé sur l’utilisation simultanée de deux lasers IR pour chauffer localement l’hétérostructure jusqu’à une température suffisante pour provoquer l’interdiffusion: une diode laser haute puissante émettant à 980 nanomètre couplée dans une fibre chauffe la face arrière de la gaufre sur une large surface à une température restant inférieure à celle requise pour provoquer l’interdiffusion et un laser Nd:YAG TEM 00 émettant à 1064 nm un faisceau de 500 µm de large provoque une élévation de température additionnelle localisée à la surface de l’échantillon, permettant ainsi l’interdiffusion de l’hétérostructure. Les dispositifs fabriqués ont montré une augmentation de 33 % de la largeur à mi-hauteur du spectre émis à puissance égale de 1.5 mW. Cependant, l’intensité du pic de PL dans les zones interdiffusées est diminuée de 60 %, suggérant une dégradation du matériau et la difficulté à produire un matériau de qualité satisfaisante.

Page generated in 0.1272 seconds