• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 58
  • 35
  • 14
  • 14
  • 6
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 361
  • 85
  • 45
  • 39
  • 30
  • 28
  • 28
  • 27
  • 25
  • 20
  • 19
  • 19
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Comportement d'un arc électrique impulsionnel de forte intensité : cas du disjoncteur modulaire / High-current transient electric arc behaviour

Déplaude, Gauthier 03 July 2017 (has links)
Le disjoncteur modulaire protège les installations électriques basse-tension contre les défauts de court-circuit. L’arc électrique, généré dans la chambre de coupure du disjoncteur lors de l’ouverture du circuit, est fractionné en plusieurs arcs dans un assemblage de multiples plaquettes métalliques, afin de limiter l’intensité du courant et d'isoler le défaut. Le travail exposé dans ce document se concentre sur la phase de limitation de l’intensité du courant de court-circuit. Une chambre d’arc modèle représente de façon simplifiée l’environnement de l’arc électrique durant cette phase. L'arc est amorcé par une impulsion haute-tension entre deux plaquettes métalliques fixes, l'onde de courant est transitoire et de forte intensité. La pertinence du montage expérimental est validée par la confrontation des phénomènes qu'il permet d'observer à ceux rencontrés dans le disjoncteur. Une attention particulière est portée à la tension d'arc, qui est une caractéristique déterminante pour la performance de la limitation. L’influence du matériau des électrodes est étudiée, en distinguant le substrat d’un éventuel revêtement. / The modular circuit breaker protects low-voltage lectrice installations against short-circuit faults. The electric arc generated in the arc chamber of the circuit breaker upon opening of the circuit is divided into several arcs in an assembly of multiple metallic plates, in order to limit the current and isolate the fault.The work set out in this paper focuses on the short-circuit current limitation phase. A model arc chamber represents in a simplified way the environment of the electric arc during this phase. The arc is initiated by a high-voltage pulse between two fixed metal plates, the current wave is transient and of high intensity.The relevance of the experimental setup is validated by comparison of the phenomena that it allows to observe with those encountered in the circuit breaker. Particular attention is paid to the arc voltage, which is a determining feature for the performance of the limitation. The influence of the material of the electrodes is studied, distinguishing the substrate from a possible coating.
72

Studium tvrdých procesů ve srážkách těžkých iontů na detektoru ATLAS / Study of hard processes in heavy ion collisions at ATLAS

Štefko, Pavol January 2015 (has links)
Jet production in PbPb collisions at a per-nucleon center-of-mass energy of 2.76 TeV has been studied using the ATLAS detector at the LHC. Interactions between the high- pT partons and the hot, dense medium, produced in these ultrarelativistic collisions, are expected to cause the loss of the jet energy (jet quenching). This thesis presents results of the jet analysis done on the data taken during the 2011 heavy-ion run at the LHC as well as PYTHIA Monte Carlo reference. Jets are reconstructed using the anti-kt jet clustering algorithm and studied as a function of collision centrality and dijet energy imbalance. With increasing centrality, dijets are observed to be increasingly asymmetric, consistent with the theory of jet quenching. The study of charged particle tracks indicates the increase of the low-pT tracks in the strongly quenched jets. 1
73

Jet Impingement Heat Transfer from Superheated, Superhydrophobic Surfaces

Butterfield, David Jacob 21 July 2020 (has links)
Liquid jet impingement is a technique ubiquitously used to rapidly remove large amounts of heat from a surface. Several different regions of heat transfer spanning from forced convection to nucleate, transition, and film boiling can occur very near to one other both temporally and spatially in quenching or high wall heat flux scenarios. Heat transfer involving jet impingement has previously shown dependency both on jet characteristics such as flow rate and temperature as well as surface material properties. Water droplets are known to bead up upon contact with superhydrophobic (SH) surfaces. This is due to reduced surface attraction caused by micro- or nanostructures that, combined with a natively hydrophobic surface chemistry, reduce liquid-solid contact area and attraction, promoting droplet mobility. This remarkable capability possessed by SH surfaces has been studied in depth due to its potential for self-cleaning and shear reduction, but previous research regarding heat transfer on such surfaces shows that it has varying effects on thermal transport. This thesis investigates the effect that quenching initially hot SH surfaces by water jet impingement has on heat transfer, particularly regarding phase change. Two comparative studies are presented. The first examines differences in transient heat transfer from hydrophilic, hydrophobic, and SH surfaces over a range of initial surface temperatures and with jets of varying Reynolds number (ReD), modified by adjusting flow rate. Comparisons of instantaneous local heat flux from the surfaces are made by performing an energy balance over differential control volumes across the surfaces. General trends show increased heat flux, jet spreading velocity and maximum jet spread radius when ReD is increased. An increase in inital surface temperature resulted in increased heat flux across all surfaces, but slowed jet spreading. The local heat flux, average heat rate, and total thermal energy transfer from the surface all confirmed that SH surfaces allow significantly less heat to transfer to the jet compared to hydrophilic surfaces, due to the enhanced Leidenfrost condition and reduced liquid-solid contact on SH surfaces which augments thermal resistance. The second study compares jet impingement heat transfer from SH surfaces of varying microstructures. Similar thermal effects due to modified jet ReD and initial surface temperature were observed. Modifying geometric pattern from microposts to microholes, altering cavity fraction, and changing feature pitch and width had little impact on heat transfer. However, reducing feature height on the post surfaces facilitated water penetration within the microstructure, slightly enhancing thermal transport.
74

Direkt släckning efter uppslag

Ahlin Heikkinen, Daniel, Holmberg-Kasa, Jacob January 2019 (has links)
Målet med denna undersökning är att minska energiförbrukningen vid framställning av gjutna detaljer i austenitiskt manganstål. Detta görs genom att undersöka om det är materialmässigt möjligt att göra förändringar som förkortar framställningsprocessen av de gjutna detaljerna medan snarlika materialegenskaper bibehålls. Den processförändring som undersöks är att slopa upplösningsbehandlingen under framställningsprocessen genom att istället släcka den gjutna detaljen direkt efter uppslag från gjutform. Konkret innebär detta att detaljen slås upp och släcks vid ett tidigare och tidsbestämt skede. Detta tillvägagångssätt kallas inom metallindustrin för direkt släckning och appliceras idag på andra legeringar och tillverkningsprocesser.För att undersöka om det är materialtekniskt möjligt att genomföra denna förändring i framställningsprocessen tas provkroppar fram. Dessa provkroppar är av en förbestämd geometri och tas fram under kontrollerade förutsättningar. Av totalt nio provkroppar släcks sex provkroppar direkt medan tre genomgår upplösningsbehandling där de senast nämnda används som referenser. Provkropparna undersöks med metoder så som mikroskopi och hårdhetsmätning för att bestämma de relevanta materialegenskaperna i provkropparna. Undersökningen visar antydningar på att det är möjligt att införa direkt släckning. Detta eftersom kornstorlek och karbidandelar inte skiljer sig nämnvärt mellan direkt släckta och värmebehandlade prover som har undersökts i denna studie. Men för ett mer definitivt fastställande behövs fortsatta studier. / The aim of this study is to reduce the energy consumed during manufacturing of parts in manganese steel. This is done by determining the possibility to make changes that shortens the production process of the castings while keeping the material properties similar. The process change that is studied is to see if it is possible to skip the heat treatment process by quenching directly after shake out of the casting. This means that the casted product needs to be shaken out and quenched at an earlier and more specific time. This process is known in the metal industry as direct quenching and is by the time of writing applied on different alloys and manufacturing processes.To determine the possibility to make the aforementioned changes to the casting process, taking the material properties into account, sample bodies are created. These sample bodies are of a predetermined geometry and are manufactured under controlled circumstances. From a total of nine sample bodies six are directly quenched and three are put through a heat treatment process, the later mentioned bodies are used as references. The sample bodies are studied with methods such as microscopy and hardness testing. In this study there are indications that it is possible to introduce direct quencing in the production of details made of austenitic manganese steel. This is because the difference in grain size and fraction of carbides is small between the direct quenched and the heat treated samples in this study. Nevertheless, further studies needs to be made to make a more definitive conclusion.
75

Using single molecule fluorescence to study substrate recognition by a structure-specific 5’ nuclease

Rashid, Fahad 12 1900 (has links)
Nucleases are integral to all DNA processing pathways. The exact nature of substrate recognition and enzymatic specificity in structure-specific nucleases that are involved in DNA replication, repair and recombination has been under intensive debate. The nucleases that rely on the contours of their substrates, such as 5’ nucleases, hold a distinctive place in this debate. How this seemingly blind recognition takes place with immense discrimination is a thought-provoking question. Pertinent to this question is the observation that even minor variations in the substrate provoke extreme catalytic variance. Increasing structural evidence from 5’ nucleases and other structure-specific nuclease families suggest a common theme of substrate recognition involving distortion of the substrate to orient it for catalysis and protein ordering to assemble active sites. Using three single-molecule (sm)FRET approaches of temporal resolution from milliseconds to sub-milliseconds, along with various supporting techniques, I decoded a highly sophisticated mechanism that show how DNA bending and protein ordering control the catalytic selectivity in the prototypic system human Flap Endonuclease 1 (FEN1). Our results are consistent with a mutual induced-fit mechanism, with the protein bending the DNA and the DNA inducing a protein-conformational change, as opposed to functional or conformational selection mechanism. Furthermore, we show that FEN1 incision on the cognate substrate occurs with high efficiency and without missed opportunity. However, when FEN1 encounters substrates that vary in their physical attributes to the cognate substrate, cleavage happens after multiple trials During the course of my work on FEN1, I found a novel photophysical phenomena of protein-induced fluorescence quenching (PIFQ) of cyanine dyes, which is the opposite phenomenon of the well-known protein-induced fluorescence enhancement (PIFE). Our observation and characterization of PIFQ led us to further investigate the general mechanism of fluorescence modulation and how the initial fluorescence state of the DNA-dye complex plays a fundamental role in setting up the stage for the subsequent modulation by protein binding. Within this paradigm, we propose that enhancement and quenching of fluorescence upon protein binding are simply two different faces of the same process. Our observations and correlations eliminate the current inconvenient arbitrary nature of fluorescence modulation experimental design.
76

A comparison of the effects of local and global environment on galaxy evolution in low redshift galaxy clusters

Howard, Brittany 03 January 2020 (has links)
Using the redMaPPer catalog of 21709 galaxy clusters and photometric information for 455946 galaxies from SDSS DR8, we study the effects of local and global environment on galaxy evolution within clusters in the redshift range 0.2 ≤ z ≤ 0.5 and the richness range 20 ≤ λ ≤ 236. We use cluster richness λ as a proxy for global environment and cluster-centric radius dBCG to represent the local environ- ment within clusters. We measure giant-to-dwarf ratio (GDR) which gives insight regarding the composition of the red sequence, and we measure red fraction which holds information about the rate at which galaxies falling into clusters cease to form new stars and build up the red sequence in a phenomenon called quenching. We ob- serve that red fraction decreases with redshift, increases with λ, and decreases with dBCG. GDR, meanwhile, decreases with redshift, does not vary significantly with λ, and decreases with dBCG. All together, our results tell the story of clusters starting with bright, massive galaxies which accrete smaller and smaller galaxies over time. The galaxies are quickly quenched upon entering clusters environment. We observe that most quenching occurs on smaller richness scales than our data covers, and that by the time clusters have grown to the richnesses redMaPPer is sensitive to, ram pressure stripping is likely to be the dominant quenching mechanism. / Graduate
77

Finite Element Modeling and Simulation on the Quenching Effect for Spur Gear Design Optimization

Xu, Rixin 12 September 2008 (has links)
No description available.
78

Development of the Pressure-Sensitive-Paint Technique for Advanced Turbomachinery Applications

Navarra, Kelly R. 16 July 1997 (has links)
A new pressure-measurement technique which employs the tools of molecular spectroscopy has recently received considerable attention in the fluid mechanics community. Measurements are made via oxygen-sensitive molecules attached to the surface of interest as a coating, or paint. The pressure-sensitive-paint (PSP) technique is now commonly used in stationary wind-tunnel tests; this thesis presents the extension of the technique to advanced turbomachinery applications. New pressure- and temperature-sensitive paints (TSPs) have been developed for application to a state-of-the-art transonic compressor where pressures up to 2 atm and surface temperatures up to 140° C are expected for the first-stage rotor. PSP and TSP data has been acquired from the suction surface of the first-stage rotor of a transonic compressor operating at its peak-efficiency condition. The shock structure is clearly visible in the pressure image, and visual comparison to the corresponding computational fluid dynamics (CFD) prediction shows qualitative agreement to the PSP data. / Master of Science
79

The System CaF2-CaMgSi2O6

Lin, Szu-Bin 01 1900 (has links)
<p> The melt equilibria of the system CaF2-CaMgSi2O6 has been studied at atmospheric pressure by using a modified quenching method. This system is characterized by a simple binary eutectic at CaF2 43.4, CaMgSi2O6 56.5 weight percent at 1082t 2°C; neither solid solution nor intermediate compound was found. Some special features have been discussed in detail. The results of the study of the system CaF2-CaMgSi2O6, together with suppositions regarding the system CaF2-CaMgSi2O6-CaCO3, have tentatively been applied to a hypothesis regarding the origin of certain skarns which are considered to be formed by differential melting of impure limestone in regional metamorphic terrains. The applications of this binary system to the theoretical chemistry of Portland cement burning is also incidentally considered. </p> / Thesis / Master of Science (MSc)
80

Aluminum Speciation Using Fluorescence Quenching

Smith, Donald Scott 02 May 1994 (has links)
<p> A noninvasive method using fluorescence quenching (FQ) to determine the conditional stability constants (logK') for aluminum with naturally occurring organic ligands has been developed. The method utilizes the Stern-Volmer equation to interpret data from ligand fluorescence suppression by aluminum. The total ligand concentration can also be determined using the measured stability constant and the Ryan-Weber equation. The method has been validated with the model ligand salicylic acid; logK' was found to be 3.5 ± 0.01 vs. 4.0 from the literature. The method was applied to the reference ligand Armadale fulvic acid and chemically realistic values were obtained. In addition, the expected trend of increasing stability constant with decreasing pH was observed. The method was further validated by determining the stability constant for Armadale fulvic acid using an independent technique, PCV colourimetry; the results agreed very well logK' = 4.7 vs. 4.65 for FQ analysis. Application of the method to whole filtered beaver pond water showed an increasing trend in the stability constant as the dissolved organic carbon (DOC) decreased. The Log of the stability constants were 3.15 ± 0.03, 3.26 ± 0.03, and 3.63 ± 0.02 for DOC concentrations 23, 14, and 10 ppm respectively. The method was also applied to size fractionated waters form lake Skjervatjern in Norway and the expected trend of increasing stability constant with increasing molecular weight was observed.</p> / Thesis / Bachelor of Science (BSc)

Page generated in 0.0452 seconds