• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 8
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 153
  • 153
  • 73
  • 61
  • 53
  • 52
  • 44
  • 39
  • 36
  • 29
  • 26
  • 26
  • 20
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Efficient computation of advanced skyline queries.

Yuan, Yidong, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Skyline has been proposed as an important operator for many applications, such as multi-criteria decision making, data mining and visualization, and user-preference queries. Due to its importance, skyline and its computation have received considerable attention from database research community recently. All the existing techniques, however, focus on the conventional databases. They are not applicable to online computation environment, such as data stream. In addition, the existing studies consider efficiency of skyline computation only, while the fundamental problem on the semantics of skylines still remains open. In this thesis, we study three problems of skyline computation: (1) online computing skyline over data stream; (2) skyline cube computation and its analysis; and (3) top-k most representative skyline. To tackle the problem of online skyline computation, we develop a novel framework which converts more expensive multiple dimensional skyline computation to stabbing queries in 1-dimensional space. Based on this framework, a rigorous theoretical analysis of the time complexity of online skyline computation is provided. Then, efficient algorithms are proposed to support ad hoc and continuous skyline queries over data stream. Inspired by the idea of data cube, we propose a novel concept of skyline cube which consists of skylines of all possible non-empty subsets of a given full space. We identify the unique sharing strategies for skyline cube computation and develop two efficient algorithms which compute skyline cube in a bottom-up and top-down manner, respectively. Finally, a theoretical framework to answer the question about semantics of skyline and analysis of multidimensional subspace skyline are presented. Motived by the fact that the full skyline may be less informative because it generally consists of a large number of skyline points, we proposed a novel skyline operator -- top-k most representative skyline. The top-k most representative skyline operator selects the k skyline points so that the number of data points, which are dominated by at least one of these k skyline points, is maximized. To compute top-k most representative skyline, two efficient algorithms and their theoretical analysis are presented.
62

Efficient computation of advanced skyline queries.

Yuan, Yidong, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Skyline has been proposed as an important operator for many applications, such as multi-criteria decision making, data mining and visualization, and user-preference queries. Due to its importance, skyline and its computation have received considerable attention from database research community recently. All the existing techniques, however, focus on the conventional databases. They are not applicable to online computation environment, such as data stream. In addition, the existing studies consider efficiency of skyline computation only, while the fundamental problem on the semantics of skylines still remains open. In this thesis, we study three problems of skyline computation: (1) online computing skyline over data stream; (2) skyline cube computation and its analysis; and (3) top-k most representative skyline. To tackle the problem of online skyline computation, we develop a novel framework which converts more expensive multiple dimensional skyline computation to stabbing queries in 1-dimensional space. Based on this framework, a rigorous theoretical analysis of the time complexity of online skyline computation is provided. Then, efficient algorithms are proposed to support ad hoc and continuous skyline queries over data stream. Inspired by the idea of data cube, we propose a novel concept of skyline cube which consists of skylines of all possible non-empty subsets of a given full space. We identify the unique sharing strategies for skyline cube computation and develop two efficient algorithms which compute skyline cube in a bottom-up and top-down manner, respectively. Finally, a theoretical framework to answer the question about semantics of skyline and analysis of multidimensional subspace skyline are presented. Motived by the fact that the full skyline may be less informative because it generally consists of a large number of skyline points, we proposed a novel skyline operator -- top-k most representative skyline. The top-k most representative skyline operator selects the k skyline points so that the number of data points, which are dominated by at least one of these k skyline points, is maximized. To compute top-k most representative skyline, two efficient algorithms and their theoretical analysis are presented.
63

Question Classification in Question Answering Systems

Sundblad, Håkan January 2007 (has links)
<p>Question answering systems can be seen as the next step in information retrieval, allowing users to pose questions in natural language and receive succinct answers. In order for a question answering system as a whole to be successful, research has shown that the correct classification of questions with regards to the expected answer type is imperative. Question classification has two components: a taxonomy of answer types, and a machinery for making the classifications.</p><p>This thesis focuses on five different machine learning algorithms for the question classification task. The algorithms are k nearest neighbours, naïve bayes, decision tree learning, sparse network of winnows, and support vector machines. These algorithms have been applied to two different corpora, one of which has been used extensively in previous work and has been constructed for a specific agenda. The other corpus is drawn from a set of users' questions posed to a running online system. The results showed that the performance of the algorithms on the different corpora differs both in absolute terms, as well as with regards to the relative ranking of them. On the novel corpus, naïve bayes, decision tree learning, and support vector machines perform on par with each other, while on the biased corpus there is a clear difference between them, with support vector machines being the best and naïve bayes being the worst.</p><p>The thesis also presents an analysis of questions that are problematic for all learning algorithms. The errors can roughly be divided as due to categories with few members, variations in question formulation, the actual usage of the taxonomy, keyword errors, and spelling errors. A large portion of the errors were also hard to explain.</p> / Report code: LiU-Tek-Lic-2007:29.
64

Ontology Learning And Question Answering (qa) Systems

Baskurt, Meltem 01 May 2010 (has links) (PDF)
Ontology Learning requires a deep specialization on Semantic Web, Knowledge Representation, Search Engines, Inductive Learning, Natural Language Processing, Information Storage, Extraction and Retrieval. Huge amount of domain specific, unstructured on-line data needs to be expressed in machine understandable and semantically searchable format. Currently users are often forced to search manually in the results returned by the keyword-based search services. They also want to use their native languages to express what they search. In this thesis we developed an ontology based question answering system that satisfies these needs by the research outputs of the areas stated above. The system allows users to enter a question about a restricted domain by means of natural language and returns exact answer of the questions. A set of questions are collected from the users in the domain. In addition to questions, their corresponding question templates were generated on the basis of the domain ontology. When the user asks a question and hits the search button, system chooses the suitable question template and builds a SPARQL query according to this template. System is also capable of answering questions required inference by using generic inference rules defined at a rule file. Our evaluation with ten users shows that the sytem is extremely simple to use without any training resulting in very good query performance.
65

Enhancing factoid question answering using frame semantic-based approaches

Ofoghi, Bahadorreza January 2009 (has links)
FrameNet is used to enhance the performance of semantic QA systems. FrameNet is a linguistic resource that encapsulates Frame Semantics and provides scenario-based generalizations over lexical items that share similar semantic backgrounds. / Doctor of Philosophy
66

Efficient computation of advanced skyline queries.

Yuan, Yidong, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Skyline has been proposed as an important operator for many applications, such as multi-criteria decision making, data mining and visualization, and user-preference queries. Due to its importance, skyline and its computation have received considerable attention from database research community recently. All the existing techniques, however, focus on the conventional databases. They are not applicable to online computation environment, such as data stream. In addition, the existing studies consider efficiency of skyline computation only, while the fundamental problem on the semantics of skylines still remains open. In this thesis, we study three problems of skyline computation: (1) online computing skyline over data stream; (2) skyline cube computation and its analysis; and (3) top-k most representative skyline. To tackle the problem of online skyline computation, we develop a novel framework which converts more expensive multiple dimensional skyline computation to stabbing queries in 1-dimensional space. Based on this framework, a rigorous theoretical analysis of the time complexity of online skyline computation is provided. Then, efficient algorithms are proposed to support ad hoc and continuous skyline queries over data stream. Inspired by the idea of data cube, we propose a novel concept of skyline cube which consists of skylines of all possible non-empty subsets of a given full space. We identify the unique sharing strategies for skyline cube computation and develop two efficient algorithms which compute skyline cube in a bottom-up and top-down manner, respectively. Finally, a theoretical framework to answer the question about semantics of skyline and analysis of multidimensional subspace skyline are presented. Motived by the fact that the full skyline may be less informative because it generally consists of a large number of skyline points, we proposed a novel skyline operator -- top-k most representative skyline. The top-k most representative skyline operator selects the k skyline points so that the number of data points, which are dominated by at least one of these k skyline points, is maximized. To compute top-k most representative skyline, two efficient algorithms and their theoretical analysis are presented.
67

Efficient computation of advanced skyline queries.

Yuan, Yidong, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Skyline has been proposed as an important operator for many applications, such as multi-criteria decision making, data mining and visualization, and user-preference queries. Due to its importance, skyline and its computation have received considerable attention from database research community recently. All the existing techniques, however, focus on the conventional databases. They are not applicable to online computation environment, such as data stream. In addition, the existing studies consider efficiency of skyline computation only, while the fundamental problem on the semantics of skylines still remains open. In this thesis, we study three problems of skyline computation: (1) online computing skyline over data stream; (2) skyline cube computation and its analysis; and (3) top-k most representative skyline. To tackle the problem of online skyline computation, we develop a novel framework which converts more expensive multiple dimensional skyline computation to stabbing queries in 1-dimensional space. Based on this framework, a rigorous theoretical analysis of the time complexity of online skyline computation is provided. Then, efficient algorithms are proposed to support ad hoc and continuous skyline queries over data stream. Inspired by the idea of data cube, we propose a novel concept of skyline cube which consists of skylines of all possible non-empty subsets of a given full space. We identify the unique sharing strategies for skyline cube computation and develop two efficient algorithms which compute skyline cube in a bottom-up and top-down manner, respectively. Finally, a theoretical framework to answer the question about semantics of skyline and analysis of multidimensional subspace skyline are presented. Motived by the fact that the full skyline may be less informative because it generally consists of a large number of skyline points, we proposed a novel skyline operator -- top-k most representative skyline. The top-k most representative skyline operator selects the k skyline points so that the number of data points, which are dominated by at least one of these k skyline points, is maximized. To compute top-k most representative skyline, two efficient algorithms and their theoretical analysis are presented.
68

Procedural or non-procedural that is the question /

Wu, Kelvin K. January 2006 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Department of Computer Science, Thomas J. Watson School of Engineering and Applied Science, 2006. / Includes bibliographical references.
69

Optimizing and implementing repair programs for consistent query answering in databases /

Caniupǹ, Mn̤ica, January 1900 (has links)
Thesis (Ph.D.) - Carleton University, 2007. / Includes bibliographical references (p. 220-226). Also available in electronic format on the Internet.
70

Algorithms for assessing the quality and difficulty of multiple choice exam questions

Luger, Sarah Kaitlin Kelly January 2016 (has links)
Multiple Choice Questions (MCQs) have long been the backbone of standardized testing in academia and industry. Correspondingly, there is a constant need for the authors of MCQs to write and refine new questions for new versions of standardized tests as well as to support measuring performance in the emerging massive open online courses, (MOOCs). Research that explores what makes a question difficult, or what questions distinguish higher-performing students from lower-performing students can aid in the creation of the next generation of teaching and evaluation tools. In the automated MCQ answering component of this thesis, algorithms query for definitions of scientific terms, process the returned web results, and compare the returned definitions to the original definition in the MCQ. This automated method for answering questions is then augmented with a model, based on human performance data from crowdsourced question sets, for analysis of question difficulty as well as the discrimination power of the non-answer alternatives. The crowdsourced question sets come from PeerWise, an open source online college-level question authoring and answering environment. The goal of this research is to create an automated method to both answer and assesses the difficulty of multiple choice inverse definition questions in the domain of introductory biology. The results of this work suggest that human-authored question banks provide useful data for building gold standard human performance models. The methodology for building these performance models has value in other domains that test the difficulty of questions and the quality of the exam takers.

Page generated in 0.1392 seconds