• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse et étude des propriétés structurales thermodynamiques et catalytiques de nanoparticules bimétalliques Au-Cu par microscopie électronique en transmission corrigée d'abérrations / Synthesis and study of structural, thermodynamical and catalytic properties of Au-Cu bimetallic nanoparticles using an aberration corrected transmission electron microscope

Prunier, Hélène 13 February 2017 (has links)
L’émergence de nouveaux matériaux structurés à l’échelle nanométrique, aux propriétés contrôlées, a ouvert de nouvelles perspectives vis-à-vis des matériaux qui nous entourent. C’est notamment le cas des métaux et de leurs alliages et il est crucial d’établir le lien entre leurs propriétés structurales et leurs propriétés chimique et physique pour en permettre une utilisation optimale. Cette thèse s’inscrit dans ce contexte et porte sur la synthèse et la caractérisation en microscopie électronique en transmission de nanoparticules d’alliage bimétallique Au-Cu. En s’appuyant sur le diagramme de phase décrit à l’échelle macroscopique, nous nous sommes particulièrement intéressés aux nanoparticules de compositions nominales Au3Cu, AuCu et AuCu3. Le premier axe de ce travail consiste en l’élaboration de nanoparticules d’alliage Au-Cu. Deux voies de synthèse sont explorées : la voie chimique reposant sur le procédé polyol et la voie physique par ablation par laser pulsé. Le premier mode d’élaboration permet l’obtention de nanoparticules parfaitement cubiques dont la composition est systématiquement riche en Au. Les nanoparticules produites par voie physique présentent en revanche une composition maitrisée et modifiable. D’un point de vue structural, un recuit de ces dernières particules mène à leur mise en ordre chimique et à l’observation de structures L10 et L12. Cependant, nous montrons que cette transition de phase est bloquée dans les nanostructures présentant des défauts structuraux. Enfin, l’évolution du paramètre de maille des nanoparticules synthétisées selon ces deux voies de synthèse, en fonction de leur composition, a été établie et suit exactement la loi de Vegard décrite pour le matériau massif.Dans un second temps, nous avons observé des nanoparticules obtenues par voie physique en microscopie électronique en transmission environnementale, c’est-à-dire dans des conditions proches des environnements d’utilisation habituellement appliqués en catalyse. Les expériences menées en température révèlent que le mécanisme de dissolution de nanoparticules d’Au et d’alliage Au-Cu portées à haute température se fait en deux étapes : il y a fusion des nanoparticules suivi de leur évaporation pour des tailles de nanoparticules centrées autour de 10 nm. Les expériences réalisées en couplant le chauffage des nanoparticules au passage d’un gaz (H2 ou O2), en flux et dans des conditions de pression bien supérieures à celles accessibles jusqu’à maintenant, ont permis d’étudier leur comportement thermodynamique en condition oxydantes et réductrices. Nous avons notamment montré que des cycles d’oxydo-réduction de nanoparticules de taille moyenne supérieure à 20 nm conduisent à un effet Kirkendall menant, de manière réversible, à la formation de nanoparticules creuses (doughnut). Cette thèse interdisciplinaire constitue travail pionnier dans la compréhension du système d’alliage bimétallique Au-Cu à l’échelle nanoscopique / The emergence of new materials, structured at the nanoscale, with controlled properties, has opened new prospects regarding materials around us. In particular for metals and alloys, it seems crucial to connect their structural properties to their chemical and physical properties in order to optimise their use.Within this context, this thesis is focused on the synthesis and the characterisation of Au-Cu bimetallic alloy nanoparticles by transmission electron microscopy. On the basis of the bulk phase diagram, we especially studied particles with nominal compositions Au3Cu, AuCu et AuCu3.The first part of this work is dedicated to the synthesis of nanoparticles in two different ways. The chemical way is based on the polyol process and leads to nanoparticles exhibiting a cubic shape, and a systematically rich Au content. On the other hand, nanoparticles obtained by Pulsed Laser Deposition (PLD), a physical method of synthesis, display a well-controlled and tuneable composition. From a structural point of view, the annealing of the particles leads to chemical order and the stabilisation of L10 and L12 structures. However, we reveal that this phase transition is blocked in nanostructures with crystal defects. Moreover, we establish the evolution of the lattice parameter of the particles as a function of the composition and we demonstrate that, as in the bulk case, it is in agreement with Vegard’s law.In the second part, the nanoparticles synthesised via the physical method are studied using environmental transmission electron microscopy, i.e. in conditions close to those usually applied in catalytic reactors. Experiments performed at high temperature highlight that the dissolution of Au and Au-Cu nanoparticles occurs in a two-step process: fusion occurs first and is followed by evaporation for nanoparticles with a mean diameter of 10 nm.Coupling heating with gas flow (H2 or O2) in higher pressure condition than those usually reached allows us to study the thermodynamic behaviour of the nanoparticles in oxidative or reductive conditions. Most Notably, we show that oxidation-reduction cycles performed on nanoparticles with a diameter larger than 20 nm leads to a Kirkendall effect and the reversible formation of hollow particles (doughnuts).This cross-disciplinary thesis is a pioneering work towards understanding the bimetallic Au-Cu alloy system at atomic scale
2

Les "cokes" dans les zéolithes hiérarchisées (nature/localisation et toxicité/réactivité) / Cokes into the hierarchiacal zeolites (nature/location and toxicity/reactivity)

Ngoye, Francis 21 November 2014 (has links)
Le craquage du méthylcyclohexane (MCH) à 450 °C et la conversion de l'éthanol (EtOH) en hydrocarbures à 350 °C sous 30 bar sont effectués sur zéolithes HZSM-5 (de taille de cristallite micrométrique et nanométrique) hiérarchisées. Ces deux réactions modèles mais complexes conduisent à la formation du coke, qui est toxique en MCH et potentiellement actif en EtOH. La toxicité (Tox) et la réactivité du coke dépendent fortement des propriétés texturales des catalyseurs. Dans ce travail, il est démontré que quelle que soit la réaction, le coke dans le cas des zéolithes taille micrométriques est « lourd », il est principalement constitué d'alkylphénanthrènes et alkylpyrènes et est localisé dans les micropores. Dans les zéolithes de taille nanométriques et hiérarchisées (méso-microporeux), le coke est plutôt « léger », formé majoritairement d'alkylbenzènes et alkylnaphtalènes ; ce coke qualifié de léger, est localisé en surface externe. Le coke situé dans les canaux et intersection de la zéolithe HZSM-5 est plus toxique (Tox ≥ 1) que celui situé en surface externe (Tox < 1). La diminution du chemin de diffusion offre également un avantage certain lors de la régénération des catalyseurs en abaissant les températures d'élimination totale de ces cokes. Les effets des propriétés texturales sur les performances catalytiques et la désactivation sont nettement plus marqués dans le cas de EtOH (réaction plus sensible) que MCH. / The Methylcyclohexane (MCH) cracking at 450 °C and the ethanol (EtOH) conversion into hydrocarbons at 350 °C under 30 bar are performed over Hierarchical HZSM-5 zeolites (with micro- and nanometer crystal size). These two model but complex reactions lead to the formation of coke which is toxic with MCH and active with EtOH. The toxicity (Tox) and the reactivity of coke depend strongly on the catalysts textural properties. In this work, it's shown that whatever the reaction, coke in the case of micrometric zeolites is "heavy" and consists mainly of alkylphenanthrenes and alkylpyrenes located into the micropores. In nano-sized and hierarchical (meso-microporous) zeolites, coke is rather "light" and consisting mostly of alkyl benzenes and naphthalenes located on the external surface. The coke located into the channels and at the channels intersections of HZSM-5 zeolite is more toxic (Tox ≥ 1) than that located on the external surface (Tox <1). The decrease in the diffusion path also offers a clear advantage in the catalysts regeneration by lowering the temperature of total coke removal. The effect of textural properties on the catalytic performances and the deactivation are more pronounced in the case of EtOH (more sensitive reaction) than MCH.

Page generated in 0.0701 seconds