• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Concurrency, references and linear logic / Concurrences, Références et Logique Linéaire

Hamdaoui, Yann 25 September 2018 (has links)
Le sujet de cette thèse est l’étude de l’encodage des références et de la concurrence dans la Logique Linéaire. Notre motivation est de montrer que la Logique Linéaire est capable d’encoder des effets de bords, et pourrait ainsi servir comme une cible de compilation pour des langages fonctionnels qui soit à la fois viable, formalisée et largement étudiée. La notion clé développée dans cette thèse est celle de zone de routage. C’est une famille de réseaux de preuve qui correspond à un fragment de la logique linéaire différentielle, et permet d’implémenter différentes primitives de communication. Nous les définissons et étudions leur théorie. Nous illustrons ensuite leur expressivité en traduisant un λ-calcul avec concurrence, références et réplication dans un fragment des réseaux différentiels. Pour ce faire, nous introduisons un langage semblable au λ-calcul concurrent d’Amadio, mais avec des substitutions explicites à la fois pour les variables et pour les références. Nous munissons ce langage d’un système de types et d’effets, et prouvons la normalisation forte des termes bien typés avec une technique qui combine la réductibilité et une nouvelle technique interactive. Ce langage nous permet de prouver un théorème de simulation, et un théorème d’adéquation pour la traduction proposée. / The topic of this thesis is the study of the encoding of references andconcurrency in Linear Logic. Our perspective is to demonstrate the capabilityof Linear Logic to encode side-effects to make it a viable, formalized and wellstudied compilation target for functional languages in the future. The keynotion we develop is that of routing areas: a family of proof nets whichcorrespond to a fragment of differential linear logic and which implementscommunication primitives. We develop routing areas as a parametrizable deviceand study their theory. We then illustrate their expressivity by translating aconcurrent λ-calculus featuring concurrency, references and replication to afragment of differential nets. To this purpose, we introduce a language akin toAmadio’s concurrent λ-calculus, but with explicit substitutions for bothvariables and references. We endow this language with a type and effect systemand we prove termination of well-typed terms by a mix of reducibility and anew interactive technique. This intermediate language allows us to prove asimulation and an adequacy theorem for the translation
2

Étude de la polarisation en logique

Laurent, Olivier 11 March 2002 (has links) (PDF)
Issue des travaux sur la logique linéaire et l'analyse calculatoire de la logique classique, la notion de polarités semble jouer un rôle essentiel dans l'étude actuelle des systèmes logiques. La polarisation est une contrainte qui simplifie les objets tout en conservant une expressivité suffisante d'un point de vue informatique.<br /><br />L'objet de cette thèse est d'étudier et d'exploiter cette nouvelle structure afin en particulier de mettre à jour les relations entre la logique classique et la logique linéaire (LL). L'introduction des polarités dans LL permet de mieux appréhender ce vaste système et de prolonger le développement de différents outils trop complexes en l'absence de cette contrainte. Nous définissons ainsi, pour la logique linéaire polarisée (LLP), des réseaux de preuve intégrant les connecteurs additifs de manière satisfaisante, une sémantique des jeux polarisés qui réconcilie jeux et dualité, une géométrie de l'interaction parallèle et d'autres sémantiques dénotationnelles basées sur des notions connues (espaces de corrélation, catégories de contrôle).<br /><br />Il est important de montrer que malgré cette contrainte, LLP reste un système suffisamment expressif. Pour cela nous étudions en détail les traductions des différents systèmes de logique classique déterministe connus (LC, lambda-mu calcul, ...) aussi bien en appel par nom qu'en appel par valeur. De surcroît, les traductions obtenues pour ces systèmes sont plus simples que celles vers LL.<br /><br />Enfin la souplesse de ces traductions nous permet d'analyser plus finement certaines propriétés de la logique classique tout comme LL permet d'analyser la logique intuitionniste. On peut ainsi étudier un équivalent linéaire des CPS-traductions.
3

Réseaux de preuve et génération pour les grammaires de types logiques

Pogodalla, Sylvain 27 September 2001 (has links) (PDF)
L'étude de la relation entre syntaxe et sémantique qu'établissent les grammaires de types<br />logiques a essentiellement privilégié le sens de l'analyse - syntaxe vers sémantique. Cette thèse souligne le profit que la génération - sémantique vers syntaxe - tire de l'étroitesse de cette relation.<br /><br />Elle s'appuie sur l'étude logique de ces modèles grammaticaux et met en avant l'utilisation de la logique linéaire et de ses réseaux de preuve. Autour du calcul de Lambek, un fragment intuitionniste de la logique linéaire non commutative, nous étudions le comportement des extensions de ce calcul en tant que modèles syntaxiques, notamment avec le calcul ordonné. Nous montrons par exemple qu'un fragment de ce dernier permet d'engendrer la même classe de langage que les grammaires d'arbres adjoints.<br /><br />D'autre part, l'adéquation de la syntaxe, portée par la notion de preuve, à la sémantique de Montague, portée par la notion de lambda-terme, s'illustre dans la correspondance de Curry-Howard. L'utilisation des réseaux de preuve nous permet de montrer que, pour le calcul de Lambek et pour des représentations sémantiques linéaires avec une constante au moins, le problème de génération est décidable et que ces grammaires sont intrinsèquement réversibles. Nous caractérisons les formes sémantiques permettant une réalisation syntaxique polynomiale. Aussi pouvons-nous proposer une méthode complète de génération dans ce cadre.<br /><br />Ces résultats, de même que l'implémentation dont ils ont fait l'objet, exploitent la théorie de la démonstration sous-jacente et en particulier les réseaux de preuve sous forme de graphes. Nous obtenons ainsi un cadre uniforme pour l'analyse et la génération. Pour le conserver, dans l'optique d'une prise en compte sémantique de termes non linéaires grâce aux connecteurs exponentiels de la logique linéaire, nous donnons une nouvelle syntaxe et un nouveau critère de correction pour les réseaux avec exponentiels sous forme de graphes.
4

Sémantique des phases, réseaux de preuve et divers problèmes de décision en logique linéaire.

Mogbil, Virgile 17 January 2001 (has links) (PDF)
La logique linéaire (LL) permet de prendre naturellement en compte la notion de ressource. Elle est ainsi très expressive : le plus petit fragment propositionnel est déjà NP-complet alors que le plus grand est indécidable car on peut y simuler les modèles de calculs usuels comme les machines à registres. La décidabilité du fragment multiplicatif exponentiel de LL (MELL) est un problème ouvert. Cette thèse établit la complétude de la sémantique des phases semi-linéaire pour le fragment de Horn de MELL. La prouvabilité dans ce dernier est équivalente à l'accessibilité dans les réseaux de Pétri. Ce résultat constitue une première étape vers l'éventuelle décidabilité de MELL (conjecture de Y.Lafont). Le chapitre suivant développe le codage du problème des circuits hamiltoniens où la notion de choix (qui est ici naturellement traduite par les connecteurs additifs) est gérée multiplicativement. Ce procédé pourrait être étendu à l'étude d'autres problèmes de théorie des graphes. On obtient ainsi une nouvelle preuve de la NP-complétude du fragment multiplicatif de la logique linéaire. C'est un travail réalisé en commun avec T.Krantz. Enfin, on donne un critère de correction quadratique pour les réseaux de preuves de la logique non-commutative de P.Ruet (qui contient la logique linéaire et la logique linéaire cyclique). Il permet de plus de traiter les réseaux de preuve avec coupures.
5

Subsitutions explicites, logique et normalisation

Polonovski, Emmanuel 30 June 2004 (has links) (PDF)
Les substitutions explicites ont été introduites comme un raffinement du lambda-calcul, celui-ci étant le<br />formalisme utilisé pour étudier la sémantique des langages de programmation. L'objet de cette thèse<br />est l'étude de leurs propriétés de normalisation forte et de préservation de la normalisation forte. Ce<br />manuscrit rend compte de plusieurs travaux autour de ces propriétés de normalisation, regroupés en<br />trois volets.<br /><br />Le premier d'entre eux formalise une technique générale de preuve de normalisation forte utilisant<br />la préservation de la normalisation forte. On applique cette technique à un spectre assez large de calculs<br />avec substitutions explicites afin de mesurer les limites de son utilisation. Grâce à cette technique, on<br />prouve un résultat nouveau : la normalisation forte du lambda-upsilon-calcul simplement typé.<br /><br />Le deuxième travail est l'étude de la normalisation d'un calcul symétrique non-déterministe issu de<br />la logique classique formulée dans le calcul des séquents, auquel est ajouté des substitutions explicites.<br />La conjonction des problèmes posés par les calculs symétriques et ceux posés par les substitutions<br />explicites semble vouer à l'échec l'utilisation de preuves par réductibilité. On utilise alors la technique<br />formalisée dans le premier travail, ce qui nous demande de prouver tout d'abord la préservation de la<br />normalisation forte. A cette fin, on utilise un fragment de la théorie de la perpétuité dans les systèmes<br />de réécriture.<br /><br />La définition d'une nouvelle version du lambda-ws-calcul avec nom, le lambda-wsn-calcul, constitue le troisième<br />volet de la thèse. Pour prouver sa normalisation forte par traduction et simulation dans les réseaux<br />de preuve, on enrichit l'élimination des coupures de ceux-ci avec une nouvelle règle, ce qui nous oblige<br />à prouver que cette nouvelle notion de réduction est fortement normalisante.

Page generated in 0.0673 seconds