• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of an In-situ cell, for hard X-ray spectroscopy of surfaces used in high-pressure and high-temperature experiments : Design av en In-situ cell för intensiv röntgenspektroskopi i högtryck- högtemperaturexperiment

Zamora Torres, David, Abeln, Felix January 2021 (has links)
This project analyzes how an in-situ cell can be developed to withstand high amounts of pressure and temperature of at least 100 bar and 500 °C. A theoretical prototype will be created as a product for Malmö University and other researchers to use or improve. To make this possible, the five step method was used to present a symmetric geometrical concept for the cell. That geometric concept was designed in PTC Creo (Version 6.0.2.0 & 7.0) in 3D and drawings in 2D. The programs GRANTA EduPack (Version 2020 \& Version 2019) along with Hephaestus was used to determine a material selection that will be able to tolerate temperature, pressure and be at least ten percent transparent, to be able for the X-ray to pass through the material and into the sample. The Finite Element Method (FEM) was used to ensure that the cell adheres to the set values of pressure and not cause a catastrophic failure. The result turn out to be a elliptical three part in-situ cell of boron carbide outer shell, a beryllium main dome and a stainless steel plate for the material sample to be on top. The Finite Element Method also showed that the designed in-situ cells meet the requirements and fulfills the goal and purpose. Further development of safety features and the equipment will be needed to minimise the risk of and dangers of beryllium dust. / Detta projekt analyserar hur en in-situ cell kan utvecklas för att motstå höga mängder tryck och temperatur på minst 100 bar och 500 °C . En teoretisk prototyp kommer att skapas som en produkt för Malmö universitet och andra forskare att använda eller förbättra. För att göra detta möjligt användes femstegsmetoden för att presentera ett symmetriskt och geometriskt koncept för cellen. Det geometriska konceptet kommer att utformas 3-dimensionellt i PTC Creo (Version 6.0.2.0  7.0) och 2-dimensionella ritningar . GRANTA EduPack-programmen (Version 2020 \& Version 2019) tillsammans med Hephaestus användes för att bestämma ett materialval som kommer att kunna tolerera temperatur, tryck och vara minst tio procent transparent för att röntgenstrålningen ska kunna passera genom materialet och in i provet. Finite Element Method (FEM) kommer att användas för att säkerställa att cellen följer de inställda tryckvärdena och inte orsakar katastrofala fel. Resultatet visar sig vara en elliptisk tredelad in-situ cell av borkarbid som ett yttre skal, beryllium som huvudkupol och en rostfri stålplatta som underlag för materialprovet. Finite Element Method visade också att den designade in-situ-cellen uppfyller kraven och därför uppfyller målet och syftet. Detta innebär att vidareutveckling av säkerhetsfunktioner och utrustning kommer att behövas för att minimera risken för berusning från berylliumdammet.

Page generated in 0.0498 seconds