• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 5
  • Tagged with
  • 24
  • 22
  • 15
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soft X-ray Spectroscopic Study of Amino Acid and Salt Solutions / Weichröntgenspektroskopische Untersuchungen von Aminosäuren und Salzen in wässriger Lösung

Meyer, Frank January 2015 (has links) (PDF)
This thesis focuses on the investigation of the electronic structure of amino acids and salts in aqueous solution using X-ray spectroscopic methods. Both material groups are of fundamental importance with regards to many physiological reactions, especially for the Hofmeister effect which describes the solubility of proteins in salt solutions. Hence, the investigation of the electronic structure of amino acids and the influence of ions on the hydrogen bonding network of liquid water are important milestones to a deeper understanding of the Hofmeister series. Besides investigating the electronic structure of amino acids in aqueous solution, the spectra were used to develop a building block model of the spectral fingerprints of the functional groups and were compared to spectral signatures of suitable reference molecules. In the framework of this thesis, it is shown that the building block approach is a useful tool with allows the interpretation of spectral signatures of considerably more complex molecules In this work, the focus lies on the investigation of the occupied and unoccupied electronic states of molecules in solid state, as well as in aqueous solution. Hereby, different X-ray spectroscopic methods were applied. X-ray emission spectroscopy (XES) was used to probe the occupied electronic structure of the solution, while the unoccupied electronic structure was addressed by using X-ray absorption spectroscopy (XAS). Finally, resonant inelastic X-ray scattering (RIXS) as a combination of XAS and XES measurements provides the combined information about the unoccupied and occupied molecular levels. The element specific character of the three measurement methods is a feature which allows the investigation of the local electronic structure of a single functional group. With RIXS, also non-equivalent atoms of the same element can be addressed separately. Within this thesis firstly, a library of the XE spectra of all 20 proteinogenic amino acids in zwitterionic form is presented. From this sample-set XES fingerprints of the protonated alpha-amino group NH3+ and the deprotonated carboxylic group COO- were evaluated and used to identify the XES fingerprints of the nitrogen and oxygen containing functional groups of the side chains of the amino acids. The data is discussed based on a building block approach. Furthermore, the XE spectra of the functional groups of lysine and histidine, namely the NH2 group and the C3N2H4 ring structure, are both compared to XE spectra of suitable reference molecules (imidazole, ammonia and methylamine). It is found that the XE and RIXS spectra of the side chains of lysine and histidine show large similarities to the XE spectra of the reference molecules. This agreement in the XE and RIXS spectra allows a qualitative investigation of XE and RIXS spectra of more complex amino acids using the XE and RIXS spectra of suitable reference molecules. The chemical structure of histidine and proline is quite different from the structures of the other proteinogenic amino acids. Due to the unique chemical structure of the side chain which in both cases consists of a heterocyclic ring structure, these two amino acids were investigated in more detail. Zubavichus et al. [1] have shown that amino acids are decomposing while exposed to X-ray radiation of the experiment. The damage is irreversible and molecular fragments can adsorb on the membrane of the experimental setup. This contamination can also create a spectral signature which then overlaps with the signal of the solution and which complicates the interpretation of the data. To record spectra which are free from contributions of adsorbed molecular fragments on the membrane, the adsorption behavior was investigated. In contrast to the solid phase in which the amino acids are present as salts in one electronic conformation, the charge state of the amino acids can be manipulated in aqueous solution by tuning the pH-value. By doing this, all possible charge states are accessible (cation, anion, zwitterion). In this work it is shown that also the spectra of the different charge states can be modeled by the spectra of suitable reference molecules using the building block approach. The spectral changes occurring upon protonation and deprotonation of the functional groups are explored and verified by comparing them to theoretical calculations. The comparison with measurements of pyrrolidine show that the electronic structure which surrounds the nitrogen atom of proline is strongly influenced by the ring structure of the side chain. Furthermore, the proline, pyrrolidine, and histidine molecules are also degrading during the liquid sample measurements. This can be observed by the detection of a new spectral component which increases with the measurement time originating from the window membrane. In all cases, the speed of the agglomeration of molecular fragments at the membrane was observed to be highly sensitive to the pH value of the solution. To understand the Hofmeister series, also the impact of the salt ions have to be investigated. In this study the influence of potassium chloride (KCl) on the hydrogen bond network of water was studied by using non-resonantly excited XES as well as RIXS. A decreased dissociation of hydrogen molecules and changes in the molecular vibrations could be detected. These changes were interpreted with a molecular reorganization of the water molecules and a decreased number of hydrogen bonds. / Im Rahmen dieser Arbeit werden Untersuchungen zur elektronischen Struktur von verschiedenen Aminosäuren sowohl in wässriger Lösung als auch als Festkörper präsentiert. Das Hauptaugenmerk liegt hierbei auf dem Erlangen eines fundamentalen Verständnisses über die elektronische Struktur der Aminosäuren in wässriger Lösung und der Entwicklung eines Baukastenprinzips für die qualitative Analyse der Röntgenemissions- und resonanten inelastischen Röntgenstreuungsspektren. In dieser Arbeit wird neben Aminosäuren auch der Einfluss von Salzionen auf das dynamische Wasserstoffbrückenbindungsnetzwerk des flüssigen Wassers untersucht. Beide Aspekte stellen wichtige Zwischenschritte auf dem Weg zu einem detaillierten Verständnis des Hofmeister-Effekts dar. In dieser Arbeit wurden röntgenspektroskopische Methoden verwendet, um die besetzten und unbesetzten Zustände der Moleküle sowohl im Festkörper als auch in wässriger Lösung zu untersuchen. Angewandt wurde dabei die Röntgenabsorptionsspektroskopie (XAS), welche die Untersuchung der unbesetzten Zustände erlaubt. Im Gegensatz dazu liefert die Röntgenemissionsspektroskopie (XES) Informationen über die besetzten Zustände. Die resonante inelastische Röntgenstreuung (RIXS) vereint diese beiden Techniken und enthält Informationen über die gesamte elektronische Struktur eines Systems. Der elementspezifische Charakter dieser Messmethoden muss dabei gesondert hervorgehoben werden, denn dadurch ist es möglich die lokale elektronische Struktur unterschiedlicher funktioneller Gruppen getrennt voneinander zu untersuchen. Im Rahmen dieser Arbeit wurde zunächst eine Bibliothek der XES-Spektren der zwanzig proteinogenen Aminosäuren angelegt. Daraus konnten spektrale Fingerabdrücke der einzelnen funktionellen Gruppen und der Stickstoff und Sauerstoff enthaltenden Seitenketten der Aminosäuren erstellt werden. Die Spektren der einzelnen funktionellen Gruppen von Lysin und Histidin wurden in einem zweiten Schritt mit den Spektren von kleineren Molekülen, welche die pure funktionelle Gruppe repräsentieren, verglichen. Durch die sehr gute Übereinstimmung konnte gezeigt werden, dass die Röntgenemissionsspektren der untersuchten Aminosäuren nach einem Baukastenprinzip durch die Spektren der kleineren und dadurch einfacheren Referenzmoleküle beschrieben werden können. Mit Hilfe dieses Baukastenprinzips wurde im weiteren Verlauf dieser Arbeit die detaillierte Untersuchung der elektronischen Struktur der Aminosäuren Prolin und Histidin möglich. Die Aminosäuren Histidin und Prolin wurden dabei wegen ihrer speziellen chemischen Struktur, welche sich durch eine Ringstruktur an der Seitenkette von der chemischen Struktur der restlichen Aminosäuren unterscheidet, für eine genauere Untersuchung ausgewählt. Sowohl Prolin als auch Histidin werden durch die starke Röntgenstrahlung während des Experiments irreparabel beschädigt, wodurch sich die spektrale Signatur der Moleküle sehr stark ändert. Um diese Beschädigungen zu erkennen und zu vermeiden wurden die Veränderungen der Spektren in Abhängigkeit der Belichtungszeit dokumentiert. Neben Festkörpermessungen, bei welchen die Aminosäuren nur in einer einzigen Konfiguration vorhanden sind (zwitterionisch), wurden die Aminosäuren auch in ihrer natürlichen Umgebung, der wässrigen Lösung, untersucht. Durch die Variation des pH-Wertes der Lösung kann die Konfiguration und damit die elektronische Struktur geändert werden (Kation, Anion, Zwitterion). Eine starke Veränderung in den Spektren in Abhängigkeit des pH-Wertes konnte festgestellt werden. Dabei fällt auf, dass die elektronische Struktur des Stickstoffs in der Aminosäure Prolin sehr stark durch die Ringstruktur der Seitenkette beeinflusst wird, was durch den Vergleich des Spektrums mit dem Spektrum des Pyrrolidin Moleküls gezeigt wurde. Des Weiteren konnte sowohl bei den Flüssigexperimenten mit Prolin als auch mit Histidin eine Kontamination der Membran festgestellt werden, welche durch Molekülfragmente entsteht. Dieser Kontaminierungsprozess konnte für Prolin und Histidin vor allem bei neutralem und hohem pH-Wert beobachtet werden. Dennoch konnten durch das Baukastenprinzip und die Untersuchungen der Referenzmoleküle Imidazol und Pyrrolidin Erkenntnisse über die elektronische Struktur von Histidin und Prolin gewonnen werden. Mit Hilfe der resonanten inelastischen Röntgenstreuung konnten die spektralen Fingerabdrücke der beiden nicht äquivalenten Stickstoffatome des Imidazols experimentell voneinander getrennt werden. Des Weiteren wurden innerhalb der RIXS-Spektren starke resonante Einflüsse beobachtet. Mit Hilfe von berechneten Spektren von isolierten Imidazol und Imidazolium Molekülen konnten die spektralen Signaturen sowohl im nicht resonanten Spektrum als auch im resonanten Spektrum erklärt werden und im Einzelnen auf die Struktur der Valenzorbitale zurückgeführt werden. Auf dem Weg zum Verständnis des Hofmeister-Effekts ist neben den Aminosäuren natürlich auch der Einfluss von Salzen auf die Lösung zu berücksichtigen. Im letzten Teil dieser Arbeit stehen daher die Auswirkungen der Ionen des Kaliumchlorids auf das Röntgenemissionsspektrum des Wassers im Fokus. Dazu wurden KCl Lösungen verschiedener Konzentrationen untersucht. Durch die Zugabe von Salz konnte eine Umorientierung der Wassermoleküle und des damit verbundenen Netzwerks von Wasserstoffbrückenbindungen beobachtet werden.
2

Soft X-ray Spectroscopic Study of Electronic and Magnetic Properties of Magnetic Topological Insulators / Spektroskopische Untersuchung der elektronischen und magnetischen Eigenschaften magnetischer topologischer Isolatoren mit weicher Röntgenstrahlung

Tcakaev, Abdul-Vakhab January 2023 (has links) (PDF)
After the discovery of three-dimensional topological insulators (TIs), such as tetradymite chalcogenides Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ – a new class of quantum materials characterized by their unique surface electronic properties – the solid state community got focused on topological states that are driven by strong electronic correlations and magnetism. An important material class is the magnetic TI (MTI) exhibiting the quantum anomalous Hall (QAH) effect, i.e. a dissipationless quantized edge-state transport in the absence of external magnetic field, originating from the interplay between ferromagnetism and a topologically non-trivial band structure. The unprecedented opportunities offered by these new exotic materials open a new avenue for the development of low-dissipation electronics, spintronics, and quantum computation. However, the major concern with QAH effect is its extremely low onset temperature, limiting its practical application. To resolve this problem, a comprehensive understanding of the microscopic origin of the underlying ferromagnetism is necessary. V- and Cr-doped (Bi,Sb)$_2$Te$_3$ are the two prototypical systems that have been widely studied as realizations of the QAH state. Finding microscopic differences between the strongly correlated V and Cr impurities would help finding a relevant model of ferromagnetic coupling and eventually provide better control of the QAH effect in these systems. Therefore, this thesis first focuses on the V- and Cr-doped (Bi,Sb)$_2$Te$_3$ systems, to better understand these differences. Exploiting the unique capabilities of x-ray absorption spectroscopy and magnetic circular dichroism (XAS/XMCD), combined with advanced modeling based on multiplet ligand-field theory (MLFT), we provide a detailed microscopic insight into the local electronic and magnetic properties of these systems and determine microscopic parameters crucial for the comparison with theoretical models, which include the $d$-shell filling, spin and orbital magnetic moments. We find a strongly covalent ground state, dominated by the superposition of one and two Te-ligand-hole configurations, with a negligible contribution from a purely ionic 3+ configuration. Our findings indicate the importance of the Te $5p$ states for the ferromagnetism in (Bi, Sb)$_2$Te$_3$ and favor magnetic coupling mechanisms involving $pd$-exchange. Using state-of-the-art density functional theory (DFT) calculations in combination with XMCD and resonant photoelectron spectroscopy (resPES), we reveal the important role of the $3d$ impurity states in mediating magnetic exchange coupling. Our calculations illustrate that the kind and strength of the exchange coupling varies with the impurity $3d$-shell occupation. We find a weakening of ferromagnetic properties upon the increase of doping concentration, as well as with the substitution of Bi at the Sb site. Finally, we qualitatively describe the origin of the induced magnetic moments at the Te and Sb sites in the host lattice and discuss their role in mediating a robust ferromagnetism based on a $pd$-exchange interaction scenario. Our findings reveal important clues to designing higher $T_{\text{C}}$ MTIs. Rare-earth ions typically exhibit larger magnetic moments than transition-metal ions and thus promise the opening of a wider exchange gap in the Dirac surface states of TIs, which is favorable for the realization of the high-temperature QAH effect. Therefore, we have further focused on Eu-doped Bi$_2$Te$_3$ and scrutinized whether the conditions for formation of a substantial gap in this system are present by combining spectroscopic and bulk characterization methods with theoretical calculations. For all studied Eu doping concentrations, our atomic multiplet analysis of the $M_{4,5}$ x-ray absorption and magnetic circular dichroism spectra reveals a Eu$^{2+}$ valence, unlike most other rare earth elements, and confirms a large magnetic moment. At temperatures below 10 K, bulk magnetometry indicates the onset of antiferromagnetic ordering. This is in good agreement with DFT results, which predict AFM interactions between the Eu impurities due to the direct overlap of the impurity wave functions. Our results support the notion of antiferromagnetism coexisting with topological surface states in rare-earth doped Bi$_2$Te$_3$ and corroborate the potential of such doping to result in an antiferromagnetic TI with exotic quantum properties. The doping with impurities introduces disorder detrimental for the QAH effect, which may be avoided in stoichiometric, well-ordered magnetic compounds. In the last part of the thesis we have investigated the recently discovered intrinsic magnetic TI (IMTI) MnBi$_6$Te$_{10}$, where we have uncovered robust ferromagnetism with $T_{\text{C}} \approx 12$ K and connected its origin to the Mn/Bi intermixing. Our measurements reveal a magnetically intact surface with a large moment, and with FM properties similar to the bulk, which makes MnBi$_6$Te$_{10}$ a promising candidate for the QAH effect at elevated temperatures. Moreover, using an advanced ab initio MLFT approach we have determined the ground-state properties of Mn and revealed a predominant contribution of the $d^5$ configuration to the ground state, resulting in a $d$-shell electron occupation $n_d = 5.31$ and a large magnetic moment, in excellent agreement with our DFT calculations and the bulk magnetometry data. Our results together with first principle calculations based on the DFT-GGA$+U$, performed by our collaborators, suggest that carefully engineered intermixing plays a crucial role in achieving a robust long-range FM order and therefore could be the key for achieving enhanced QAH effect properties. We expect our findings to aid better understanding of MTIs, which is essential to help increasing the temperature of the QAH effect, thus facilitating the realization of low-power electronics in the future. / Nach der Entdeckung von dreidimensionalen topologischen Isolatoren (TIs), einer neuen Klasse von Quantenmaterialien, die sich durch ihre einzigartigen elektronischen Oberflächeneigenschaften auszeichnen – und zu denen beispielsweise die Tetradymit-Di\-chal\-kogenide Bi2Se3, Bi2Te3 und Sb2Te3 gehören –, gerieten zunehmend topologische Zustände, deren Eigenschaften von starken elektronische Korrelationen und Magnetismus bestimmt werden, in den Fokus aktueller Festkörperforschung. Eine wichtige Materialklasse bilden die magnetischen TI (MTI), die einen quantenanomalen Hall-Effekt (QAH) aufweisen, d.h. eine dissipationsfreie, quantisierte Randzustandsleitfähigkeit in Abwesenheit eines externen Magnetfeldes, die aus dem Zusammenspiel von Ferromagnetismus und einer topologisch nicht-trivialen Bandstruktur resultiert. Die beispiellosen Möglichkeiten, die solche neuen, exotischen Materialien bieten, eröffnen einen neuen Weg für die Entwicklung von Elektronik mit geringer Verlustleistung, sowie von Spintronik und von Quanten\-com\-pu\-tern. Das Hauptproblem des QAH-Effekts ist jedoch die extrem niedrige Temperatur, bei der er auftritt, was seine praktische Anwendung einschränkt. Um dieses Problem zu lösen, ist ein umfassendes Verständnis des mikroskopischen Ursprungs des zugrunde liegenden Ferromagnetismus erforderlich. V- und Cr-dotiertes (Bi,Sb)2Te3 sind die beiden prototypischen Systeme, die als Realisierungen des QAH-Zustands umfassend untersucht wurden. Die Suche nach mikro\-skopischen Unterschieden zwischen den stark korrelierten V- und Cr-Dotieratomen würde helfen, ein relevantes Modell für die ferromagnetische Kopplung zu finden und schließlich eine bessere Kontrolle des QAH-Effekts in diesen Systemen zu ermöglichen. Daher konzentriert sich diese Arbeit zunächst auf die V- und Cr-dotierten (Bi,Sb)2Te3-Systeme, um diese Unterschiede besser zu verstehen. Unter Ausnutzung der einzigartigen Möglich\-keiten der Röntgenabsorptionsspektroskopie und des magnetischen Zirkulardichroismus (XAS/XMCD), kombiniert mit fortschrittlicher Modellierung auf der Grundlage der Multiplett-Liganden-Feld-Theorie (MLFT), geben wir einen detaillierten mi\-kro\-sko\-pi\-schen Einblick in die lokalen elektronischen und magnetischen Eigenschaften dieser Systeme und bestimmen mikroskopische Parameter, die für den Vergleich mit theoretischen Modellen entscheidend sind. Wir finden einen stark kovalenten Grundzustand, der von der Überlagerung von Ein- und Zwei-Te-Liganden-Loch-Konfigurationen dominiert wird, mit einem vernachlässigbaren Beitrag einer rein ionischen 3+ Konfiguration. Unsere Ergebnisse weisen auf die Bedeutung der Te 5p$−Zustände für den Ferromagnetismus in(Bi,Sb)\(2Te3 hin und deuten auf magnetische Kopplungsmechanismen mit pd-Austausch hin. Unter Verwendung modernster Dichtefunktionaltheorie (DFT)-Rechnungen in Kombination mit XMCD und resonanter Photoelektronenspektroskopie (resPES) demonstrieren wir die wichtige Rolle der 3d-Dotieratomzustände bei der Vermittlung der magnetischen Austauschkopplung. Unsere Berechnungen zeigen, dass die Art und Stärke der Austauschkopplung mit der 3d-Schalenbesetzung der Dotieratome variiert. Wir stellen eine Abschwächung der ferromagnetischen Eigenschaften bei Erhöhung der Dotierungskonzentration fest, ebenso wie bei Substitution von Bi an der Sb-Stelle. Schließlich beschreiben wir qualitativ den Ursprung der induzierten magnetischen Momente an den Te- und Sb-Stellen im Wirtsgitter und diskutieren ihre Rolle bei der Vermittlung eines robusten Ferromagnetismus auf der Grundlage des pd$−Austauschwechselwirkungsszenarios. Unsere Ergebnisse liefern wichtige Anhaltspunkte für die Entwicklung von MTIsmithöherem\(TC. Seltenerdionen weisen typischerweise größere magnetische Momente auf als Über\-gangsmetall-Ionen und legen daher die Öffnung einer größeren Austausch\-lücke in den Dirac-Ober\-flächenzuständen von TIs nahe, was für den Hochtemperatur-QAH-Effekt günstig ist. Daher haben wir uns weiter auf Eu-dotiertes Bi2Te3 konzentriert und untersucht, ob die Bedingungen für die Bildung einer substantiellen Lücke in diesem System gegeben sind, indem wir spektroskopische und Bulk-Charakterisierungsmethoden mit theoretischen Berechnungen kombiniert haben. Für alle untersuchten Eu\hyp{}Dotierungs\-kon\-zen\-trationen zeigt unsere atomare Multiplettanalyse der M4,5-Röntgenabsorptions- und der magnetischen Zirkulardichroismus-Spektren eine Eu2+-Valenz, im Gegensatz zu den meisten anderen Seltenen Erden, und bestätigt ein großes magnetisches Moment. Bei Temperaturen unter 10 K zeigt die Magnetometrie das Einsetzen einer antiferromagnetischen Ordnung an. Dies steht in guter Übereinstimmung mit DFT-Ergebnissen, die AFM-Wechselwirkungen zwischen den Eu-Dotieratomen aufgrund des direkten Überlapps der Wellenfunktionen der Dotieratome vorhersagen. Unsere Ergebnisse unterstützen die Annahme von Antiferromagnetismus, der mit topologischen Oberflächenzuständen in mit Seltenerdatomen dotiertem Bi2Te3 koexistiert, und bestätigen das Potenzial einer solchen Dotierung, einen antiferromagnetischen TI mit exotischen Quanteneigenschaften zu erzeugen. Dotierung führt zu einer für den QAH-Effekt nachteiligen Unordnung, die in stöchiometrischen, gut geordneten magnetischen Verbindungen vermieden werden kann. Im letzten Teil der Arbeit haben wir den kürzlich entdeckten, intrinsischen magnetischen TI (IMTI) MnBi6Te10 untersucht, in dem wir robusten Ferromagnetismus mit TC≈12 K beobachtet und seinen Ursprung mit Mn/Bi-Antilagendefekte (Substitution von Mn auf Bi-Plätzen und umgekehrt) in Verbindung gebracht haben. Unsere Messungen zeigen eine magnetisch intakte Oberfläche mit einem großen Moment und mit FM-Eigenschaften, die denen im Inneren des Materials ähnlich sind, was MnBi6Te10 zu einem vielversprechenden Kandidaten für den QAH-Effekt bei erhöhten Temperaturen macht. Darüber hinaus haben wir mit Hilfe eines fortgeschrittenen ab initio MLFT-Ansatzes die Grundzustandseigenschaften von Mn bestimmt und einen vorherrschenden Beitrag der d5-Konfiguration zum Grundzustand festgestellt, was zu einer d-Schalen-Elektronenbesetzung nd=5.31 und einem großen magnetischen Moment führt, in hervorragender Übereinstimmung mit unseren DFT-Berechnungen und den Daten der Magnetometrie. Unsere Ergebnisse, kombiniert mit den auf DFT-GGA+U basierenden First-Principle-Berechnungen, die von Kollegen durchgeführt wurden, deuten darauf hin, dass sorgfältig herbeigeführte Antilagendefekte eine entscheidende Rolle bei der Erzielung einer robusten langreichweitigen FM-Ordnung spielen und daher der Schlüssel zur Er\-zie\-lung verbesserter QAH\hyp{}Eigenschaften sein könnten. Wir erwarten, dass unsere Ergebnisse zu einem besseren Verständnis von MTIs beitragen werden, was wiederum die Erhöhung der Temperatur des QAH-Effekts und damit die Realisierung von Low-Power-Elektronik in der Zukunft erleichtern wird.
3

Soft x-ray spectroscopy of organic molecules and liquids / Spektroskopie mit weicher Röntgenstrahlung an organischen Molekülen und Flüssigkeiten

Fuchs, Oliver January 2009 (has links) (PDF)
In this thesis, soft x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) studies of the electronic structure of selected organic molecules and liquids were carried out. The first part focuses on the used experimental techniques and the development of the instrumentation necessary for these studies, namely a soft x-ray spectrometer, and a temperature-controlled flow-through liquid cell. The former was optimized by a special analytical ray tracing method developed exclusively for this purpose. Due to its high transmission, the spectrometer facilitates a novel experimental approach of recording comprehensive 'RIXS maps', which are 2-dimensional plots of x-ray scattering intensities as a function of both, excitation and emission photon energy. The liquid cell extends these possibilities to the study of liquids, especially the interaction of molecules in liquids and their chemical reactions under well-controlled conditions. Organic molecules have attracted considerable attention in the last decade. The intense research activities related to these materials have two main motivations: on the one hand, organic molecules have a technological application as building blocks of organic semiconductors, while, on the other hand, organic molecules are the functional elements in biological systems. In order to cost-effectively produce optimized organic electronic devices, a fundamental knowledge of the electronic properties of the organic molecules interface is necessary. Therefore, many studies of the electronic structure of potential candidates for organic electronics exist. Two of these candidates, namely C60 and well-ordered multilayers PTCDA on a Ag(111) surface are investigated in this thesis. For the study of C60 molecules, a comprehensive 'RIXS map' was recorded and analyzed. The RIXS map taken in only 25 minutes allows a quantitative analysis of energy losses, yielding for example the HOMO-LUMO distance. It also identifies a core-excitonic state and facilitates a quantitative comparison of its binding energy with that of valence excitons in C60. Furthermore, decay channel-selective partial fluorescence yield XAS spectra can be extracted from the RIXS map, yielding information on the population of the core-excitonic state as a function of excitation energy. As a second model system of organic molecules relevant for organic electronics, PTCDA was chosen. The complex electronic structure of the occupied states of a highly ordered, flat-lying PTCDA multilayer on a Ag(111) surface was investigated by symmetry-resolved resonant x-ray emission spectroscopy. The rapidly occurring beam damage effects were characterized on the basis of irradiation-time dependent series of C and O x-ray emission spectra. Upon varying the excitation energy and emission geometry, atom- and symmetry-specific carbon K emission spectra with negligible beam damage effects were obtained that allow to distinguish between electronic states with sigma and pi symmetry. A density functional theory calculation of the PTCDA molecule reproduces the energy positions of the most prominent emission features remarkably well. In addition, the energy positions of the sigma and pi emissions agree well with the calculated energies of the respective orbitals. In order to shed light on the second aspect of organic molecules, namely their role in biological systems, first a detailed investigation of the electronic structure and proton dynamics of liquid water as the medium of most chemical and biochemical reactions was carried out. Therefore, a comprehensive oxygen K RIXS map of liquid water was recorded and analyzed in great detail. A temperature-dependent comparison with XAS and RIXS data of D2O, NaOH, and NaOD leads to the conclusion, that ultra-fast dissociation takes place in liquid water on the timescale of the oxygen 1s core hole lifetime, resulting in a characteristic spectral contribution in the RIXS spectra. The dissociation is promoted by intact hydrogen bonds with neighboring molecules. In consequence, the rate of dissociation directly depends on the initial hydrogen bond configuration. In the next step towards biologically relevant systems, the nitrogen K edges of the amino acids glycine and histidine were investigated in powderous form as well as in their native environment, namely in aqueous solution. X-ray absorption and emission spectra of the aqueous solutions were analyzed at pH-values of 6 and for glycine also at pH 12 and compared to the spectra of powders. A pH-value of 12 causes deprotonation of the amino group, leading to significant changes in the nitrogen spectra as compared to pH 6. The results from these four examples demonstrate that a wealth of novel information can be obtained by using the new experimental tools developed in this thesis, namely a highly sensitive x-ray spectrometer and a flow-through liquid cell. / Diese Arbeit beschäftigt sich mit der Untersuchung der elektronischen Struktur ausgewählter organischer Moleküle und Flüssigkeiten mittels Röntgenabsorptionsspektroskopie (XAS) und resonanter inelastischer Röntgenstreuung (RIXS). Der erste Teil beschreibt die verwendeten spektroskopischen Methoden und die Entwicklung der dafür notwendigen Geräte, insbesondere eines Röntgenspektrometers und einer temperierten Durchflussnasszelle. Ersteres wurde mittels einer eigens dafür entwickelten analytischen Raytracing-Methode optimiert. Aufgrund seiner hohen Transmission ermöglicht das Spektrometer einen für weiche Röntgenstrahlung neuartigen experimentellen Ansatz, nämlich die Aufnahme einer umfassenden RIXS-Karte. Das ist eine 2-dimensionale Auftragung der Röntgenstreuintensität als Funktion der Anregungs- und der Emissionsphotonenenergie. Die Nasszelle erweitert diese experimentellen Möglichkeiten auf die Untersuchung von Flüssigkeiten. Organische Moleküle haben im letzten Jahrzehnt erhebliche Aufmerksamkeit auf sich gezogen. Die intensiven Forschungsaktivitäten an diesen Materialen haben zwei Hauptmotivationen: einerseits haben organische Moleküle technologische Anwendung als organische Halbleiter, und andererseits sind organische Moleküle die funktionalen Einheiten in biologischen Systemen. Um optimierte organische Halbleiterbauelemente kostengünstig produzieren zu können, muss man über die elektronischen Eigenschaften der organischen Moleküle genauestens Bescheid wissen. Deshalb wurde bereits eine Vielzahl an Untersuchungen potentieller Kandidaten für organische Halbleiterbauelemente durchgeführt. Zwei dieser Kandidaten, nämlich C60 und wohlgeordnete Multilagen von PTCDA auf einer Ag(111)-Oberfläche werden in dieser Arbeit untersucht. Für die Untersuchung der C60 Moleküle wurde eine RIXS-Karte aufgenommen und analysiert, woraus sich direkt die HOMO-LUMO Distanz ergab. Außerdem lässt sich die Existenz eines rumpfexzitonischen Zustands beobachten, dessen Bindungsenergie man quantitativ mit der Valenzexzitonenbindungsenergie in C60 vergleichen kann. Überdies können aus der RIXS-Karte Zerfallskanal-selektive Fluoreszenzausbeute XAS Spektren extrahiert werden, die zum Beispiel Auskunft über die Besetzung des rumpfexzitonischen Zustands als Funktion der Anregungsenergie geben. Als zweites Modellsystem wurde PTCDA ausgewählt, das mittels symmetrieaufgelöster resonanter Röntgenemissionsspektroskopie untersucht wurde. Die dabei rasch einsetzenden Strahlenschäden wurden anhand von Bestrahlungsdauer-abhängigen Serien von Kohlenstoff- und Sauerstoffspektren charakterisiert. Durch Variation der Anregungsenergie und Emissionsgeometrie wurden atom- und symmetriespezifische Kohlenstoffspektren mit vernachlässigbarem Strahlenschaden gewonnen. Diese erlauben die Unterscheidung von elektronischen Zuständen mit sigma- und pi-Symmetrie. Eine Dichtefunktionaltheorie-Rechnung stimmt bemerkenswert gut mit den Energiepositionen der spektralen Signaturen überein. Darüberhinaus passen die spektralen sigma- und pi-Anteile zu den Symmetrien der berechneten Orbitale an den jeweiligen Energiepositionen. Um den zweiten Aspekt organischer Moleküle, nämlich ihre Rolle in biologischen Systemen zu beleuchten, war es zunächst notwendig, die elektronische Struktur und Protonendynamik von flüssigem Wasser zu studieren, das bekanntermaßen das Medium vieler chemischer und biochemischer Reaktionen darstellt. Zu diesem Zweck wurde eine vollständige RIXS-Karte der Sauerstoff K Kante aufgenommen und im Detail analysiert. Ein temperaturabhängiger Vergleich mit XAS and RIXS Daten von D2O, NaOH und NaOD erlaubt die Schlussfolgerung, dass ultra-schnelle Dissoziation auf der Zeitskala der Sauerstoff 1s Rumpflochlebensdauer in flüssigem Wasser stattfindet, die zu einer charakteristischen spektralen Signatur in den RIXS Spektren führt. Diese Dissoziation wird gefördert durch intakte Wasserstoffbrückenbindungen mit benachbarten Wassermolekülen. Damit hängt die Dissoziationsrate direkt von der Ausgangskonfiguration der Wasserstoffbrückenbindungen ab. Im nächsten Schritt in Richtung biologisch relevanter Systeme wurde die Stickstoffkante der Aminosäuren Glyzin und Histidin sowohl in Pulverform als auch in wässriger Lösung untersucht. Röntgenabsorptions- und -emissionsspektren der wässrigen Lösungen wurden bei pH-Werten von 6 und im Falle des Glyzins auch bei pH 12 analysiert und mit den Pulverspektren verglichen. Ein pH-Wert von 12 führt zur Deprotonierung der Aminogruppe, was zu signifikanten Änderungen in der spektralen Signatur der Stickstoffspektren führt. Die Ergebnisse dieser vier Beispiele demonstrieren, dass eine Vielfalt neuartiger Information gewonnen werden kann durch die Anwendung der neuen experimentellen Werkzeuge, die in dieser Arbeit entwickelt wurden, nämlich eines hochempfindlichen Röntgenspektrometers und einer Durchflussnasszelle.
4

Electronic and Chemical Properties of Liquids and Solutions / Elektronische und Chemische Eigenschaften von Flüssigkeiten und Lösungen

Blum, Monika January 2009 (has links) (PDF)
Die hier vorgelegte Doktorarbeit wurde der Untersuchung der elektronischen und chemischen Eigenschaften von Flüssigkeiten und Lösungen mittels weicher Röntgenstrahlen gewidmet. Die verwendeten Photonen-rein-Photonen-raus Methoden, namentlich Röntgenabsorptionsspektroskopie (XAS), Röntgenemissionsspektroskopie (XES) und resonante inelatische Röntgenstreuung (RIXS) stellten sich als exzellente Methoden heraus, diese Systeme zu untersuchen. Im Rahmen dieser Arbeit wurde eine experimentelle Anlage gebaut, welche notwendig ist um die genannten Messmethoden zur Untersuchung von Flüssigkeiten zu nutzen. Zentraler Teil dieser Anlage ist eine neuartige Durchflussnasszelle, die die Handhabung der Messungen im Vergleich zu älteren Nasszellen vereinfacht. Dabei ist sie variabel genug, um sie zur Messung von Gasen oder Flüssig-Fest-Grenzflächen anzupassen. Mit der Zelle ist es möglich, die zu untersuchenden Flüssigkeiten unter gut kontrollierten Bedingungen (Temperatur und Durchfluss) zu untersuchen. Die Durch-flussnasszelle ist Teil einer neuen Synchrotronendstation (SALSA). Für die Messungen stehen dabei ein Elektronenanalysator und ein neuartiges hochauflösendes, hocheffizientes Weichröntgenspektrometer zur Verfügung. Mit diesem Spektrometer ist es möglich, zweidimensionale RIXS Karten in sehr kurzer Zeit (wenige Minuten) aufzunehmen, welche die vollständige Information von Röntgenabsorption und Röntgenemission beinhalten. Mit Hilfe der neu entwickelten Instrumentierung war es möglich, eine Reihe unterschiedlicher Flüssigkeiten und Lösungen zu untersuchen. Als erstes System wur-den wässrige NaOH bzw. NaOD Lösungen erforscht. Die nicht-resonanten Emissionsspektren sind stark von dem genutzten Lösungsmittel dominiert und haben daher Ähnlichkeit mit den Spektren von Wasser und schwerem Wasser. Es war möglich, eine Abhängigkeit der Spektren von der Ionenkonzentration festzustellen. Trotz der Ähnlichkeit der Spektren zu Wasserspektren war es aufgrund eines OH- / OD- spezifischen Charakteristikums an der Absorptionskante möglich, resonante Spektren von OH-/OD- ohne Beitrag des Spektrums von Wasser zu erhalten. Diese Spektren zeigten Anzei-chen für Protonendynamik auf der Zeitskala der Rumpflochlebensdauer. Für die Emissionsspektren von NaOH im festen Zustand konnten an der hochenergetischen Hauptline eine niederenergetische und hochenergetische Schulter festgestellt werden. Diese Schultern sind das Ergebnis des Eigendissoziationsprozesses von OH- Ionen, bei welchem O2- Ionen und H2O gebildet werden. Weiterhin waren die Untersuchungen an Natronlauge von Interesse für die folgenden Aminosäurenmessungen, da Natronlauge genutzt wurde, um die gewünschten pH-Wert Änderungen zu erreichen. Die zweite Gruppe von Flüssigkeiten, die in dieser Arbeit untersucht wurde, sind Aminosäuren. Aminosäuren sind die Bausteine für Peptide und Proteine und da-mit sehr wichtig für alle Biowissenschaften. Als Vertreter der Aminosäuren wurden Glycin – die kleinste Aminosäure, und Lysin – eine Aminosäure mit zwei Amingruppen – untersucht. Beide Aminosäuren reagieren sensibel auf Änderungen des pH-Wertes mit einer Deprotonierung/Protonierung der Amingruppe (NH2 ↔ NH3+). In den experimentellen Spektren konnte ein deutlicher Einfluss dieser Prozesse gefunden werden. Die gemessenen Spektren der protonierten Aminosäuren zeigen deutliche An-zeichen für Dissoziationsprozesse. Erste DFT Rechnungen bestätigten diese Anzeichen und unterstützen das Dissoziationsmodell der Aminosäuren. Qualitativ lässt sich sagen, dass sich die hochenergetische Linie in den N K XES Spektren auf die unprotonierten Amingruppen bezieht und der niederenergetische Bereich im Spektrum den protonierten Gruppen zugeordnet werden kann. Neben Aminosäuren sind auch Alkohole und organische Säuren von Bedeutung für biologische Prozesse. Daher wurden als Vertreter aus diesen Gruppen der einfachste Alkohol (Methanol) und die einfachste Säure (Essigsäure) untersucht. Die O K und C K XES Spektren von flüssigem Methanol stimmen hervorragend mit Gasphasen DFT Rechnungen überein. Dies lässt den Schluss zu, dass der Einfluss der Umgebung (Wasserstoffbrückenbindungen) auf die Spektren gering ist. Durch resonante Anregung in geeignete unbesetzte Orbitale war es möglich, die zwei unterschiedlichen Sauerstoffatome der Essigsäure zu unterscheiden und auch einen Anhaltspunkt für die Carboxylgruppen-spezifischen C K XES Spektren zu bekommen. An der Kohlenstoffkante zeigten die XAS Spektren große Unterschiede zu Gasphasenmessungen, was ein Hinweis auf den Einfluss der Wasserstoffbrückenbindungen ist. Die Untersuchung der elektronischen und chemischen Eigenschaften von Flüssigkeiten und Lösungen ist immer noch ein sehr junges Forschungsgebiet. Die Ergebnisse dieser Doktorarbeit zeigen, welch interessantes Forschungsgebiet dies ist. Die vorgestellten Ergebnisse können als die grundlegende Basis für alle weiteren Untersuchungen in diesem Forschungsfeld angesehen werden. / This thesis was dedicated to the studies of the electronic and chemical properties of liquids and solutions using soft x-ray spectroscopies. The used photon-in-photon-out methods namely x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), and resonant inelastic x-ray scattering (RIXS) appeared to be an excellent choice for these studies. In the framework of this thesis, the necessary experimental setup for using the above mentioned experimental techniques on liquids was developed. Hereby, a new flow-through liquid cell was introduced which simplifies the studies of liquids and solutions. The cell design is very flexible and thus can be modified for gases and liquid/solid interfaces. With this cell it is possible to study the samples under well-controlled conditions (temperature and flow rate). The novel flow-through liquid cell is part of the new SALSA synchrotron endstation including an electron analyzer and a novel high-resolution, high-transmission soft x-ray spectrometer. The latter makes it possible to measure two-dimensional RIXS maps in a very short time, which include the full excitation and emission information in one plot. Making use of the new instrumentation, a variety of different liquids and solutions were investigated. As first system, aqueous solutions of sodium hydroxide (NaOH) and sodium deuteroxide (NaOD) were investigated. In the XAS as well as in the XES spectra a pronounced concentration dependence was found. At non-resonant energies, the spectra are dominated by the solvent and thus look similar to water. Making use of the pre-pre-edge in the absorption spectra which can exclusively be attributed to OH- / OD- it was possible to extract the resonant emission spectra of the ions which show an indication for proton dynamics during the core-hole lifetime. For the solid state NaOH XES spectra it was possible to reveal a high energetic shoulder and a low energetic shoulder at the high energy emission feature. These shoulders can be assigned to self-dissociation processes where OH- forms O2- ions and H2O. The study of NaOH was also of interest for the studies of the amino acids, which were in the focus of the next part, since the pH-values of the respective solutions were controlled by NaOH. In the next part of this thesis, amino acid solutions were investigated. Amino acids are the building blocks of peptides and proteins and thus important for life science. The investigated representatives were glycine, the simplest amino acid, and lysine, an amino acid with two amine groups. Both amino acids react on pH-value changes at the amine group where the local environment at the nitrogen atom changes (NH2 ↔ NH3+). A strong change of the spectra induced by this protonation/deprotonation could be found. Furthermore, for low pH-values (protonated amine groups) the amine groups are influenced by strong proton dynamics. First DFT calculations confirm the dissociation model of the amino acids. Qualitatively the high energy peak in the N K XES spectra can be attributed to the deprotonated amine group and the low energy area for the protonated amine group. Besides amino acids, alcohols and acids are important in biological processes. Therefore, the smallest alcohol (methanol) and the smallest carboxylic acid (acetic acid) were under investigation. For the liquid methanol XES spectra a very good agreement with DFT calculations of gas phase methanol could be found. This observation suggests that the influence of the environment (hydrogen bonding) on the spectra is small. The achieved spectra are in good agreement with DFT calculations found in literature. It was possible to selectively excite the two non-equivalent oxygen atoms in acetic acid and to reveal the carboxyl specific C K XES. The carbon XAS spectra showed strong differences compared to gas phase measurements which might be a hint for the influence of the hydrogen bond network. The investigation of the electronic and chemical properties of liquids and solutions is a very young field of research and the results presented in this thesis show that it is a very interesting topic. The presented results can be seen as the fundamental frame work for all following studies. With the understanding of basic, i.e., simple, systems as shown in this work it will be possible to understand complex biological systems in their native environment, e.g., peptides and proteins, which are the building blocks of life.
5

Soft x-ray spectroscopic study of methanol and glycine peptides in different physical environments / Weichröntgenspektroskopische Untersuchung von Methanol und Glycin Peptiden in unterschiedlichen physischen Umgebungen

Benkert, Andreas January 2017 (has links) (PDF)
Ionenspezifische Effekte treten in einer Vielzahl von wässrigen Lösungen aus Elektrolyten und größeren Molekülen wie Peptiden auf. Die Ionen bewirken dabei Änderungen in Eigenschaften wie z.B. der Viskosität, den Aktivitäten von Enzymen, der Stabilität von Proteinen und deren Ein- bzw. Aussalzverhalten. Typischerweise wird die ionenabhängige Ausprägung derartiger Effekte mithilfe der Hofmeister–Serie beschrieben, die ursprünglich Ionen nach ihrer Fähigkeit ordnete, die Löslichkeit von Hühnereiweis in Wasser zu steigern oder zu unterdrücken. Die empirische Abfolge der Ionen in der Hofmeister–Serie kann jedoch bis heute nicht zweifelsfrei erklärt werden. Trotz weitreichender Bemühungen, ein molekulares Verständnis dieses Phänomens zu schaffen, konnte bisher keine Einigung über die zugrundeliegenden Mechanismen und die genauere Bestimmung und Lokalisierung der Wechselwirkung erzielt werden. Die resonante inelastische Weichröntgenstreuung (RIXS) kombiniert die beiden Methoden der Röntgenemissions– (XES) und Röntgenabsorptionsspektroskopie (XAS). So können mit RIXS Informationen sowohl über die besetzten als auch die unbesetzten elektronischen Zustände gesammelt und zu einem umfassenden Bild der elektronischen Struktur des Systems verknüpft werden, was diese Methode zu einem vielversprechenden Werkzeug macht, etwas mehr Licht auf die Thematik zu werfen. Die in dieser Arbeit präsentierten Ergebnisse zielen deshalb darauf ab, ein verbessertes Verständnis der Wechselwirkungen zwischen Salzen und Peptiden in wässriger Lösung zu schaffen. Hierfür wird systematisch der Einfluss verschiedenster physikalischer Umgebungen auf die elektronische Struktur von kleinen Molekülen (Methanol und von Glycin abgeleitete Peptide) mittels Weichröntgenspektroskopie, unterstützt durch Dichtefunktionaltheorie (DFT) Rechnungen, untersucht. In einem ersten Schritt werden isolierte Moleküle ohne jeglicheWechselwirkung zu ihrer unmittelbaren Umgebung anhand von Methanol in der Gasphase als Modelsystem untersucht. Hierbei wird insbesondere der lokale und elementspezifische Charakter von RIXS demonstriert und die lokale elektronische Struktur von Methanols Hydroxyl– und Methylgruppe untersucht. Mithilfe von DFT–Rechnungen werden die beobachteten Emissionslinien in den XES–Spektren der Emission bestimmter Molekülorbitale zugeordnet und deren relative Emissionsintensitäten erläutert. Für eine resonante Anregung der ersten Resonanz an der Sauerstoff–K–Absorptionskante werden starke Isotopeneffekte beobachtet, die durch dynamische Prozesse an der Hydroxylgruppe erklärt werden können. Dies dient als hervorragendes Beispiel für mögliche Auswirkungen, die eine lokale Änderung in der Geometrie oder Symmetrie des Moleküls auf dessen elektronische Struktur haben kann. Im weiteren Verlauf dieser Arbeit wird das untersuchte Probensystem um die Aminosäure Glycin und deren kleinste Peptide Diglycin und Triglycin, vorerst in ihrer kristallinen Form als Festkörper, erweitert. Mithilfe von RIXS–Karten der Stickstoff– und Sauerstoff–K–Absorptionskanten wird erneut, unterstützt durch DFT–Rechnungen, ein umfassendes Bild der elektronischen Struktur der Moleküle gezeichnet. Ähnlich zum Fall von Methanol werden die Emissionsspektren an der Stickstoff–K–Kante stark von dynamischen Prozessen an der protonierten Aminogruppe der Moleküle beeinflusst. Zudem wird gezeigt, dass RIXS gezielt dazu verwendet werden kann, das Stickstoffatom in der Peptidbindung anzuregen und die elektronische Struktur in dessen lokaler Umgebung zu untersuchen. Desweiteren wird ein einfaches Baukastenprinzip für XES–Spektren dazu genutzt, die spektralen Anteile der Emission aus Übergängen an den beiden Stickstoffatomen in Diglycin zu isolieren. In wässriger Lösung kann eine leichte Veränderung der elektronischen Struktur der Moleküle durch die Wechselwirkung mit benachbarten Wassermolekülen, vermutlich an den geladenen funktionellen Gruppen, beobachtet werden. Die Auswirkungen auf die XES–Spektren sind jedoch eher gering. Deutlich größere Veränderungen werden beobachtet, wenn man den Protonierungszustand der Moleküle über den pH–Wert der Lösung manipuliert. Sowohl die Protonierung der Carboxylgruppe für kleine pH–Werte als auch die Deprotonierung der Aminogruppe in basischer Lösung führen zu starken Veränderungen in den RIXS–Karten. In einer umfangreichen Untersuchung der XES–Spektren von Glycin als Funktion des pH–Wertes wird gezeigt, dass sich die Änderungen jedoch nicht nur örtlich begrenzt auf die Umgebung der manipulierten funktionellen Gruppe, sondern auch auf die elektronische Struktur in weiter entfernten Bereichen des Moleküls auswirken. Als Beispiel für Systeme in denen Hofmeister–Effekte beobachtet werden, werden zu guter Letzt gemischte wässrige Lösungen aus Diglycin und verschiedenen Salzen untersucht. Um den Einfluss verschiedener Kationen auf die elektronische Struktur der Diglycin Moleküle zu erfassen wird eine Reihe unterschiedlicher Chloride verwendet, wohingegen eine Reihe von Kaliumsalzen für die Untersuchung verschiedener Anionen herangezogen wird. In beiden Fällen werden ionenspezifische Auswirkungen auf die XES–Spektren von Diglycin beobachtet, die qualitativ der Sortierung innerhalb der Hofmeister–Serie folgen. Die beobachteten Änderungen deuten dabei darauf hin, dass Kationen unterschiedlich stark mit dem Sauerstoff in der Peptidbindung und dessen unmittelbarer Umgebung wechselwirken, wohingegen Anionen eine gesteigerte Affinität zur Aminogruppe von Diglycin aufweisen. / Ion-specific effects occur in a huge variety of aqueous solutions of electrolytes and larger molecules like peptides, altering properties such as viscosity, enzyme activity, protein stability, and salting-in and salting-out behavior of proteins. Typically, these type of effects are rationalized in terms of the Hofmeister series, which originally orders cations and anions according to their ability to enhance or suppress the solubility of proteins in water. This empirical order, however, is still not understood yet. Quite some effort was made to gain a molecular level understanding of this phenomenon, yet no consensus has been found about the underlying mechanisms and the determination and localization of the interaction sites. Resonant inelastic soft x-ray scattering (RIXS) combines x-ray emission (XES) and absorption spectroscopies (XAS), probing the partial local density of states of both occupied and unoccupied electronic states and is thus a promising candidate to shed more light onto the issue. The studies presented in this work are directed towards an improved understanding of the interaction between salts and peptides. In order to address this topic, the impact of different physical environments on the electronic structure of small molecules (i.e., methanol and glycine derived peptides) is investigated systematically using soft x-ray spectroscopic methods, corroborated with density functional theory (DFT) calculations. In a first step, molecules without any interactions to the surrounding are investigated, using gas-phase methanol as a model system. Thereby, the local and element specific character of RIXS is demonstrated and used to separately probe the local electronic structure of methanol’s hydroxyl and methyl group, respectively. The attribution of the observed emission features to distinct molecular orbitals is confirmed by DFT calculations, which also quantitatively explain the different relative intensities of the emission features. For resonant excitation of the O K pre-edge absorption resonance, strong isotope effects are found that are explained by dynamical processes at the hydroxyl group. This serves as an excellent example for possible consequences of a local change in the geometric structure or symmetry of a molecule on its electronic structure. In the following, the sample system is expanded to the amino acid glycine and its smallest derived peptides diglycine and triglycine. As a first step, they are studied in their crystalline form in solid state. Again, a comprehensive picture of the electronic structure is developed by measuring RIXS maps at the oxygen and nitrogen K absorption edge, corroborated by DFT calculations. Similar to the case of methanol, dynamic processes at the protonated amino group of the molecules after exciting the nitrogen atom have a strong influence on the emission spectra. Furthermore, it is shown that RIXS can be used to selectively excite the peptide nitrogen to probe the electronic structure around it. A simple building block approach for XES spectra is applied to separate the contribution of the emission attributed to transitions into core holes at the peptide and the amino nitrogen, respectively. In the aqueous solution, the surrounding water molecules slightly change the electronic structure, probably via interactions with the charged functional groups. The effects on the x-ray emission spectra, however, are rather small. Much bigger changes are observed when manipulating the protonation state of the functional groups by adjusting the pH value of the solution. A protonation of the carboxyl group at low pH values, as well as a deprotonation of the amino group at high pH values lead to striking changes in the shape of the RIXS maps. In a comprehensive study of glycine’s XES spectra at varying pH values, changes in the local electronic structure are not only observed in the immediate surrounding of the manipulated functional groups but also in more distant moieties of the molecule. Finally, the study is extended to mixed aqueous solutions of diglycine and a variety of different salts as examples for systems where Hofmeister effects are observed. To investigate the influence of different cations and anions on the electronic structure of diglycine, two series of chlorine and potassium salts are used. Ion-specific effects are identified for both cases. Some of the changes in the x-ray emission spectra of diglycine in the mixed solutions qualitatively follow the Hofmeister series as a function of the used salt. The observed trends thereby indicate an increased interaction between the electron density around the peptide oxygen with the cations, whereas anions seem to interact with the amino group of the peptide.
6

Magnetische Streuung an Grenz- und Viellagenschichten / Magnetic scattering at interfaces and multilayer

Geißler, Jochen January 2003 (has links) (PDF)
Im Rahmen dieser Arbeit wurde eine neuartige Methode entwickelt, mit der es möglich ist, Magnetisierungsverläufe ausgewählter Schichten und Grenzflächen in dünnen Schichtsystemen zu bestimmen. Diese Resonante Magnetische Röntgenreflektometrie (XRMR: X-ray Resonant Magnetic Reflectometry) kombiniert die Methode der konventionellen Röntgenreflektometrie mit resonanten magnetischen Effekten, die an Absorptionskanten magnetischer Atome auftreten. Analog zur herkömmlichen Reflektometrie, die Aussagen über Schichtdicken und vertikale Grenzflächenrauhigkeiten zulässt, liefert die XRMR das tiefenabhängige magneto-optische Profil der untersuchten magnetischen Schicht. Durch die Aufnahme zweier Reflexionsspektren bei invertierter Helizität des einfallenden Röntgenstrahls oder Umkehr der Magnetisierungsrichtung der Probe in der Nähe der Absorptionskante eines magnetischen Elements erhält man als Messsignal das Asymmetrieverhältnis, das die Information über das tiefenabhängige Magnetisierungsprofil der untersuchten Schicht enthält. Zur Anpassung an die gemessene Asymmetrie über ein optisches Näherungsverfahren ist die Modellierung der optischen Konstanten der magnetischen Schicht oder Grenzfläche notwendig, die hierzu in viele dünne Einzelschichten künstlich aufgeteilt wird. Wichtig hierbei ist die korrekte Bestimmung der dispersiven und absorptiven Ladungsanteilen des komplexen Brechungsindex durch vorherige Messung des Absorptionskoeffizienten und der Berechnung der Dispersion über die Kramers-Kronig-Relation. XRMR-Experimente wurden an Pt/Co-Schichtsystemen an den Synchrotronstrahlungsquellen HASYLAB/Hamburg und BESSYII/Berlin durchgeführt, um die Anwendbarkeit der Messmethodik im harten und weichen Röntgenbereich zu demonstrieren. Durch die intrinsische Elementselektivität resonanter Streuung und die Verstärkung magnetischer Effekte durch Interferenzerscheinungen ist es möglich, Informationen über sehr kleine induzierte magnetische Momente an der Grenzfläche zu einer ferromagnetischen Schicht zu erhalten. Dies konnte bei der Untersuchung einer einzelnen Pt/Co-Bilage gezeigt werden, bei der das Magnetisierungsprofil der Pt-Schicht an der Pt/Co-Grenzfläche bestimmt wurde. Im Weiteren konnte durch XRMR-Messungen an einer Serie von einzelnen Pt/Co-Grenzübergängen das Zusammenspiel von chemischer Grenzflächenrauhigkeit und induziertem Pt-Magnetisierungsprofil untersucht werden. Wichtig war es, die Einsetzbarkeit der Methode im weichen Röntgenbereich zu zeigen, in dem die L2,3 Kanten der 3d-Übergangsmetalle liegen, die für den Magnetismus eine herausragende Rolle spielen. Hierbei konnte durch Messung an der Co-L3 Kante das Magnetisierungsprofil einer einzelnen Co-Schicht in einer Pt/Co/Cu-Trilage extrahiert werden. Des Weiteren erlaubt die Methode die Aufnahme elementspezifischer Hysteresekurven vergrabener dünner Schichten in Schichtsystemen mit hoher Qualität. Das Verfahren ist daher prädestiniert zur quantitativen Untersuchung von modernen neuen magnetoelektronischen Komponenten wie GMR- und TMR-Sensoren, MRAM’s oder Halbleiterstrukturen der viel versprechenden „Spintronic“. Es können bei derartigen Systemen Grenzflächenphänomene vergrabener Schichten zerstörungsfrei untersucht werden und im Weiteren auch Themen, die eher der Grundlagenforschung zuzuordnen sind, wie induzierter Grenzflächenmagnetismus oder auch oszillatorische Austauschkopplung in Zukunft quantitativ und elementselektiv behandelt werden. / In this work a new method was developed to determine the magnetization depth profiles of defined layers or interfaces in thin magnetic multilayer systems. This called X-ray Magnetic Resonant Reflectometry (XRMR) combines the method of conventional X-ray reflectometry with magnetic resonant effects at absorption edges of magnetic atoms. Similar to conventional reflectivity experiments, which yield to well known analysis of layer thickness and interface roughness, specular magnetic measurements provide detailed information about the magnetization profile of a specific component in the multilayer system. The information of the depth magnetization profile is provided by the asymmetry ratio, which is obtained by measuring the reflectivity spectra near an absorption edge of a magnetic element and by flipping the helicity of the incoming photon beam or the magnetization direction of the sample. Simulations of the asymmetry ratio are based on an optical approach and replication of the measured curve could be achieved by modelling the optical constant of the magnetic layer or interface which is therefore separated into thin layered. As a result one gets the magneto optical profile of the modelled layer or interface. Care has to be taken for a correct determination of both dispersive and absorptive parts of the scattering amplitude which can be deduced by measuring the absorption coefficient and calculating the dispersion using Kramers-Kronig-relation. XRMR experiments were performed with Pt/Co layer systems at synchrotron sources HASYLAB/Hamburg and BESSYII/Berlin to demonstrate the applicability of the method both in the hard and soft X-ray region. Using the intrinsic site selectivity of resonant magnetic scattering and the enhancement of magnetic effects due to interference phenomena it is possible to get information about very small magnetic moments at the interface induced by the presence of a near-by ferromagnetic layer. This could be demonstrated by the investigation of a single Pt/Co bilayer where the depth magnetization profile of the Pt layer at the Pt/Co interface was determined. The interplay between chemical roughness and induced Pt magnetization profile could be deduced by performing measurements on a series of Pt/Co bilayer. An important item in this work was to demonstrate the applicability of the method in the soft X-ray region where the L2,3 edges of the 3d transition metals can be found which play a dominant role in the field of magnetism. By performing an XRMR experiment at the Co L3 edge the magnetization profile of a single Cobalt layer of a Pt/Co/Cu trilayer was determined. In addition method allows the measurement of site selective hysteresis loops of buried thin layers in multiplayer systems with high quality. XRMR is therefore predestined for non-destructive quantitative investigations of interface phenomena in modern magneto electronic devices like GMR and TMR systems, MRAMS`s and even for semiconductor structures of the promising spintronic devices. Further the method gives the possibility to get even more insight in topics of fundamental research like induced interface magnetism or oscillatory exchange coupling by using XRMR as an quantitative and site selective tool for magnetic investigations.
7

Untersuchung der Erzeugung hochgeladener Ionen in einer Raumtemperatur-Elektronenstrahl-Ionenfalle / Investigation on the production of highly charged ions at a room temperature electron beam ion trap

Ullmann, Falk 31 December 2005 (has links) (PDF)
Hochgeladene Ionen stellen einen extremen Zustand der Materie dar, wie sie vornehmlich in kosmischen Plasmen zu finden ist. Die labormäßige Erzeugung und (spektroskopische) Untersuchung hochgeladener Ionen liefert wichtige Daten und Erkenntnisse für die Astrophysik und Fusionsforschung. Aufgrund ihrer zum Teil exotischen Eigenschaften besitzen hochgeladene Ionen ein großes Potential für eine Vielzahl neuer Anwendungen. Die bisher weltweit einzige Elektronenstrahl-Ionenfalle, die hochgeladene Ionen bis hin zu vollständig ionisierten Ionen unter Raumtemperaturbedingungen erzeugen und bereitstellen kann, die Dresden EBIT, ist Gegenstand der vorgelegten Arbeit. Die Dresden EBIT zeichnet sich neben ihrer Kompaktheit und einer einfachen Bedienung durch ihre Langzeitstabilität aus. Sowohl über Röntgenspektren als auch über die Extraktion der Ionen aus der EBIT konnte für eine Reihe von Elementen der Nachweis der Erzeugung von vollständig ionisierten Ionen bis Z=28 erbracht werden. Für schwere Elemente können Ionenladungszustände bis hin zu neonähnlichen Ionen erzeugt werden. Entscheidenden Einfluss auf den erzielten mittleren Ladungszustand hat die Ioneneinschlusszeit. Die zeitliche Entwicklung der Ladungszustandsverteilung, wie sie im Zusammenspiel der verschiedenen atomaren Prozesse simuliert werden kann, ist sowohl an einer Reihe von röntgenspektroskopischen Messungen als auch anhand von Extraktionsspektren untersucht worden. Neben der Beladung der EBIT mit gasförmigen Elementen ist insbesondere die Beladung mit Metallen, d. h. mit einem möglichst breiten Spektrum an Elementen gefordert. Die Beladung mit leichtflüchtigen metallorganischen Verbindungen, die über das Gaseinlassventil eingebracht werden können, hat sich als erfolgreiche und preiswerte Alternative zu einer MEVVA-Quelle erwiesen. Die Beladung mit Metallionen ist am Beispiel verschiedener Untersuchungen gezeigt. Der monoenergetische Elektronenstrahl gestattet neben der Untersuchung von Anregungs- und Ionisationsprozessen insbesondere die der wichtigen Rekombinationsprozesse des Strahlenden Einfangs und der Dielektronischen Rekombination. Der Einsatz eines Kristalldiffraktionsspektrometers erlaubt trotz einer aufwendigen Kalibrierung und sehr langen Messzeiten die Auflösung einzelner Übergänge in hochgeladenen Ionen. Hauptanwendungsfeld der Dresden EBIT wird der Einsatz als Ionenquelle sein. Aus den Untersuchungen des extrahierten Gesamtionenstroms können die Bedingungen für einen möglichst großen Ionenstrom und einen optimalen Ionenstrahltransport abgeleitet werden. Eine optimale Ausnutzung der Eigenschaften hochgeladener Ionen erfordert die Separation der einzelnen Ladungszustände. Der Nachweis der sehr kleinen Ionenströme erfolgt über die kapazitive Messung in einem Faradaycup. Die Messung der Ladungszustandsverteilung in Abhängigkeit von den Parametern der EBIT gibt zusätzliche Aufschlüsse über die Eigenschaften der Ionenfalle.
8

Beiträge zur röntgenmikroanalytischen Charakterisierung anorganisch-nichtmetallischer Werkstoffe auf der Basis niederenergetischer M-Strahlung

Dellith, Jan 23 July 2009 (has links) (PDF)
Aufgrund unikaler Eigenschaften haben die Seltenerdelemente (SEE) Bedeutung in vielen Bereichen der modernen Technik. So stellt im IPHT Jena die Entwicklung aktiver optischer Fasern auf der Grundlage SEE-haltigen Quarzglasmaterials einen Schwerpunkt dar. Um die Materialentwicklung via Elektronenstrahl-Mikroanalyse adäquat begleiten zu können, sind genaue Atomdaten eine Grundvoraussetzung. Recherchen sowie praktische Erfahrungen zeigen jedoch, dass die Kenntnis der charakteristischen Röntgenstrahlung noch immer unvollständig ist, was besonders im Falle der M-Strahlung der SEE zutrifft. Als Folge kann es, vor allem bei der Anregung mit niederenergetischen Elektronen, zu falschen Analysenergebnissen kommen. Die vorliegende Arbeit befasst sich mit der detaillierten Untersuchung der M-Spektren der Elemente Z=55 bis Z=71 mittels energie- und wellenlängendispersiver Spektrometrie. Neues Datenmaterial wird präsentiert und dessen praktische Bedeutung anhand ausgewaehlter Beispiele der Analyse anorganisch-nichtmetallischer Werkstoffe aufgezeigt.
9

Diagnostik an laserinduzierten Plasmakanälen und Mikropinchstrukturen mittels Kurzzeitinterferometrie und zeitaufgelöster Röntgenspektroskopie

Blaudeck, Thomas 18 December 2002 (has links) (PDF)
This work deals with the interaction of intense 100 ps laser pulses with double-layer foil targets, consisting of one dielectric (Mylar) layer and one metallic layer. The diagnostics of the evolving plasmas is done by the means of shorttime interferometry, time-resolved X-ray spectroscopy, and methods of ion dosimetry in polymer nuclear track detectors (CR-39). / Die Arbeit beschäftigt sich mit der Wechselwirkung intensiver 100-ps-Laserpulse eines Nd:YAG-Lasersystems mit Zweischicht-Folientargets, die aus einer dielektrischen Schicht (Mylar) und einer metallischen Schicht bestehen. Die entstehenden Plasmen werden mittels Kurzzeitinterferometrie und zeitaufgelöster Röntgenspektroskopie sowie mit Methoden der Ionendosimetrie in Polymer-Kernspurätzdetektoren (CR-39) untersucht.
10

Characterization of RScO3, LuFe2O4 and M72Fe30 based molecules by x-ray spectroscopic techniques

Derks, Christine 08 April 2013 (has links)
This thesis gives a detailed overview about the electronic and magnetic structure of three different kinds of 3d-transition metal based materials with potential for possible future applications. The presented materials are a series of “high-k” rare-earth scandates, RScO3 (R=Pr, Nd, Sm, Eu, Gd, Tb and Dy), the muliferroic layered oxide LuFe2O4, and three iron-based magnetic polyoxometalates of the type {(M)M5}Fe30 (M =Mo,W). The samples are examined by several different x-ray spectroscopic techniques and complementary theoretical approaches, namely multiplet calculations and first principles electronic structure calculations, respectively. The occupied electronic states are determined by photoelectron spectroscopy (XPS) and x-ray emission spectroscopy (XES). The unoccupied states are investigated by x-ray absorption spectroscopy (XAS). X-ray magnetic circular dichroim (XMCD) is used to get the element specific magnetic moment of the materials, and these results are compared to SQUID measurements.

Page generated in 0.1322 seconds