• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Meteor head velocity determination

Stober, Gunter, Jacobi, Christoph 04 April 2017 (has links) (PDF)
Meteore, die in die Atmosphäre eindringen, bilden bei hohen Oberflächentemperaturen, die durch Kollisionen mit der umgebenden Luft hervorgerufen werden, einen mehrere Kilometer langen Plasmaschweif aus. An diesem Schweif werden ausgesandte Radarwellen reflektiert und zurückgestreut. Dies führt zu einem charakteristischen Schwingungsverhalten, auch Fresnel Zonen genannt, am Empfänger. Die Überlagerung dieser Wellen ist verantwortlich für die typische Signalform eines Meteors, mit dem abrupten Anstieg und dem exponentiellen Abfall für \"underdense\" Meteore. Mit Hilfe einer Simulation wird der theoretische Zusammenhang zwischen Geschwindigkeit und Signalverlauf demonstriert. Des weiteren wird gezeigt, das die Methode von Baggaley et al. [1997] zur Bestimmung von Meteoreintrittsgeschwindigkeiten auch auf ein Radarinterferometer (SKiYMET) anwendbar ist. Abschliessend werden die gewonnen Ergebnisse mit einem anderen Verfahren sowie der Literatur verglichen. / Meteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments.
2

Evaluation, analysis, and application of HF radar wave and current measurements

Lopez, Guiomar January 2017 (has links)
This study investigates the accuracy of the wave products retrieved by a 12-MHz high-frequency (HF) phased-array radar, and establishes their potential to characterise wave-current interactions. The two stations composing the system were deployed in 2011 to overlook the Wave Hub, a test site for marine renewable energy devices located on the south-western coast of the United Kingdom. The system was conceived and configured to reduce the inaccuracies introduced by short time averaging and minimal overlap between stations, both associated with the most traditional HF radar deployments, whose primary activity is current measurement. Wave spectra were retrieved by two independent inversion algorithms, which were evaluated both independently and relative to each other. This process helped determining the errors associated to the algorithm used, and differentiated them from those inherent to the radar technology itself. The first method investigated was a semi-empirical algorithm distributed with Wellen Radars (WERA), which was calibrated using in situ measurements collected within the radar footprint. Evaluated through comparison against measurements acquired by three in situ devices, the results revealed estimates of significant wave height with biases below 9 cm, Pearson correlations higher than 0.9, and RMS errors that range from 29 to 44 cm. The relative error of wave energy period comparisons was within 10% for periods between 8 and 13 s, while both under- and overestimations were observed above and below that range, respectively. The validation demonstrated that when locally calibrated, the algorithm performs better than in its original form in all metrics considered. Observed discrepancies were mainly attributable to single-site estimations, antenna sidelobes, and the effect of the second-harmonic peaks of the Doppler spectrum. As opposed to the semi-empirical inversion, the second method evaluated in this work provides estimates of the full directional spectrum. Compared against the in situ measurements, the radar spectra were more spread over frequencies and directions, and had a lower energy content at the peak of the spectrum. In terms of parameter estimation, this was generally translated in a slight underestimation of wave periods, but accurate estimates of significant wave heights. Pearson correlations between these parameters and the in situ measurements for the bulk of the spectrum were higher than 0.9, and both types of measurements resulted in similar standard deviations. The inversion algorithm showed a high skill estimating mean wave directions, which revealed linear correlations higher than 0.8, when compared to the in situ devices. Overall, the inversion algorithm has shown to be capable of providing accurate estimates of directional spectra and the parameters derived from them, and at present the main drawback of the method is the data return, which due to the high data quality requirements of the algorithm, did not exceed 55% over the 8-month period studied here. In the second part of this work, the validated measurements were examined to determine their ability to reproduce the effects of wave-current interactions. The fine structure of the surface current was first evaluated, and revealed a circulation dominated by tides. The residual flow was seen to respond to the wind, as well as to the stratification present in the area during the spring and summer months. These data were then used to assess their contribution to wave refraction over the radar domain. The results show modulations in the wave phase parameters, which resulted from both the temporal and spatial derivatives of the surface current velocities. The evaluation of HF radar wave measurements provided in this work has shown that, properly configured, this technology can produce accurate estimates of several statistical descriptors of the wave field. Together with the highly accurate surface currents also measured by this device, the spatial wave data obtained has proved to have great potential for studying wave-current interactions; a skill that can be of support to coastal wave modelling.
3

Ground penetrating radar response to thin layers: Examples from Waites Island, South Carolina

Guha, Swagata 01 June 2005 (has links)
Thin layers (layers that are not resolvable in terms of GPR wavelengths) are very common in sedimentary deposits. To better understand ground penetrating radar (GPR) wave behavior in sequences of thin layers with contrasting electromagnetic parameters, 1D FDTD simulations are run for simple layer distributions. Laminated (mm-scale) sequences can produce reflected energy with 10-20% of the amplitude of reflections from equivalent isolated contacts. Amplitude spectra from laminae packages are shifted toward higher frequencies. Such spectral shifts in radar profiles may potentially be used as indicators of fine-scale laminations. A comparative study of GPR records and models generated from core data from Waites Island, South Carolina, a Holocene barrier island, suggest that magnetite-rich laminae contribute significantly to radar profiles, but that some features in the radar traces cannot be associated with lithologic changes seen in vibracores.
4

Meteor head velocity determination

Stober, Gunter, Jacobi, Christoph 04 April 2017 (has links)
Meteore, die in die Atmosphäre eindringen, bilden bei hohen Oberflächentemperaturen, die durch Kollisionen mit der umgebenden Luft hervorgerufen werden, einen mehrere Kilometer langen Plasmaschweif aus. An diesem Schweif werden ausgesandte Radarwellen reflektiert und zurückgestreut. Dies führt zu einem charakteristischen Schwingungsverhalten, auch Fresnel Zonen genannt, am Empfänger. Die Überlagerung dieser Wellen ist verantwortlich für die typische Signalform eines Meteors, mit dem abrupten Anstieg und dem exponentiellen Abfall für \'underdense\' Meteore. Mit Hilfe einer Simulation wird der theoretische Zusammenhang zwischen Geschwindigkeit und Signalverlauf demonstriert. Des weiteren wird gezeigt, das die Methode von Baggaley et al. [1997] zur Bestimmung von Meteoreintrittsgeschwindigkeiten auch auf ein Radarinterferometer (SKiYMET) anwendbar ist. Abschliessend werden die gewonnen Ergebnisse mit einem anderen Verfahren sowie der Literatur verglichen. / Meteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments.

Page generated in 0.0697 seconds