• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 33
  • 33
  • 10
  • 10
  • 10
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The GMT-Consortium Large Earth Finder (G-CLEF): an optical Echelle spectrograph for the Giant Magellan Telescope (GMT)

Szentgyorgyi, Andrew, Baldwin, Daniel, Barnes, Stuart, Bean, Jacob, Ben-Ami, Sagi, Brennan, Patricia, Budynkiewicz, Jamie, Chun, Moo-Young, Conroy, Charlie, Crane, Jeffrey D., Epps, Harland, Evans, Ian, Evans, Janet, Foster, Jeff, Frebel, Anna, Gauron, Thomas, Guzmán, Dani, Hare, Tyson, Jang, Bi-Ho, Jang, Jeong-Gyun, Jordan, Andres, Kim, Jihun, Kim, Kang-Miin, Mendes de Oliveira, Claudia Mendes, Lopez-Morales, Mercedes, McCracken, Kenneth, McMuldroch, Stuart, Miller, Joseph, Mueller, Mark, Oh, Jae Sok, Onyuksel, Cem, Ordway, Mark, Park, Byeong-Gon, Park, Chan, Park, Sung-Joon, Paxson, Charles, Phillips, David, Plummer, David, Podgorski, William, Seifahrt, Andreas, Stark, Daniel, Steiner, Joao, Uomoto, Alan, Walsworth, Ronald, Yu, Young-Sam 09 August 2016 (has links)
The GMT-Consortium Large Earth Finder (G-CLEF) will be a cross-dispersed, optical band echelle spectrograph to be delivered as the first light scientific instrument for the Giant Magellan Telescope (GMT) in 2022. G-CLEF is vacuumenclosed and fiber-fed to enable precision radial velocity (PRV) measurements, especially for the detection and characterization of low-mass exoplanets orbiting solar-type stars. The passband of G-CLEF is broad, extending from 3500 angstrom to . This passband provides good sensitivity at blue wavelengths for stellar abundance studies and deep red response for observations of high-redshift phenomena. The design of G-CLEF incorporates several novel technical innovations. We give an overview of the innovative features of the current design. G-CLEF will be the first PRV spectrograph to have a composite optical bench so as to exploit that material's extremely low coefficient of thermal expansion, high in-plane thermal conductivity and high stiffness-to-mass ratio. The spectrograph camera subsystem is divided into a red and a blue channel, split by a dichroic, so there are two independent refractive spectrograph cameras. The control system software is being developed in model-driven software context that has been adopted globally by the GMT. G-CLEF has been conceived and designed within a strict systems engineering framework. As a part of this process, we have developed a analytical toolset to assess the predicted performance of G-CLEF as it has evolved through design phases.
12

Analysis of Cepheid Spectra

Taylor, Melinda Marie January 1998 (has links)
Using high resolution optical spectra from Mount John University Observatory, Mount Stromlo Observatory and the Anglo-Australian Observatory, new, high accuracy radial velocity curves have been obtained for the two bright southern Cepheids l carinae (HR 3884) and beta doradus (HR 1922). An indepth investigation into period variations, cycle-to-cycle and long-term variations in the velocity curves and the reliability of the combination of velocity data from different observatories is carried out. Evidence for shock waves in the atmosphere of l car and resonance in beta dor is discussed. A grid of static model atmospheres incorporating plane-parallel geometry is compared with the observational spectra of both Cepheids, using line depth ratios, to determine the variation in effective temperature, surface gravity and microturbulence with phase. This information is used to determine the phase dependence of the surface-brightness for both Cepheids. The surface brightness variation with phase was found to follow an almost linear relationship. The distance to and radius of the Cepheids are determined using both a near-infrared version of the Barnes-Evans method and the Fourier Baade-Wesselink (BW) method. The derived radii and distances agree within the limits of the errors for both methods. The Fourier BW method was found to be very sensitive to phase shifts between the photometric and spectroscopic data and the derived distance highly dependent on the assumed reddening. An investigation into line profile variations in l car and beta dor has revealed the magnitude of these phenomena increase as the pulsational period of the Cepheid increases. It is estimated that line level variations introduce an additional uncertainty into derived radii of approximately 4 per cent for beta dor and 10 per cent in lcar. The uncertainty introduced into derived distances and radii by line profile asymmetries was estimated to be of the order of 6 per cent in beta dor and 10 per cent in l car. A comparative analysis is made of the hydrogen line radial velocity curves of l car and beta dor. A trend in the properties of these radial velocity curves with period has been revealed. In longer period Cepheids, the Halpha line seems to be forming in a region that does not partake in the pulsation as a whole, probably in a chromospheric shell. A quantitative analysis of the asymmetries in these lines reveal large redward asymmetries near maximum infall velocity. The magnitude of these asymmetries and the period for which they are present are larger in l Car than in beta dor. The blueward asymmetries in the Halpha line in l Car are comparable in magnitude to the redward asymmetries while the other lines exhibit only small blueward asymmetries. A qualitative analysis of these line profiles with phase reveal no conclusive evidence for line doubling in these Cepheids. Evidence of emission is found in the Halpha and H Beta lines of beta dor and l car. The strength and duration of the emission is found to be greater in the longer period Cepheid. Although it is likely that this emission is shock-related, theoretical work is needed to determine the exact origin of the emission. A non-LTE radiative hydrodynamic model for l Car has been created. This atmosphere will be used in further work to calculate synthetic spectral line profiles which will aid the interpretation of our observational results.
13

Analysis of Cepheid Spectra

Taylor, Melinda Marie January 1998 (has links)
Using high resolution optical spectra from Mount John University Observatory, Mount Stromlo Observatory and the Anglo-Australian Observatory, new, high accuracy radial velocity curves have been obtained for the two bright southern Cepheids l carinae (HR 3884) and beta doradus (HR 1922). An indepth investigation into period variations, cycle-to-cycle and long-term variations in the velocity curves and the reliability of the combination of velocity data from different observatories is carried out. Evidence for shock waves in the atmosphere of l car and resonance in beta dor is discussed. A grid of static model atmospheres incorporating plane-parallel geometry is compared with the observational spectra of both Cepheids, using line depth ratios, to determine the variation in effective temperature, surface gravity and microturbulence with phase. This information is used to determine the phase dependence of the surface-brightness for both Cepheids. The surface brightness variation with phase was found to follow an almost linear relationship. The distance to and radius of the Cepheids are determined using both a near-infrared version of the Barnes-Evans method and the Fourier Baade-Wesselink (BW) method. The derived radii and distances agree within the limits of the errors for both methods. The Fourier BW method was found to be very sensitive to phase shifts between the photometric and spectroscopic data and the derived distance highly dependent on the assumed reddening. An investigation into line profile variations in l car and beta dor has revealed the magnitude of these phenomena increase as the pulsational period of the Cepheid increases. It is estimated that line level variations introduce an additional uncertainty into derived radii of approximately 4 per cent for beta dor and 10 per cent in lcar. The uncertainty introduced into derived distances and radii by line profile asymmetries was estimated to be of the order of 6 per cent in beta dor and 10 per cent in l car. A comparative analysis is made of the hydrogen line radial velocity curves of l car and beta dor. A trend in the properties of these radial velocity curves with period has been revealed. In longer period Cepheids, the Halpha line seems to be forming in a region that does not partake in the pulsation as a whole, probably in a chromospheric shell. A quantitative analysis of the asymmetries in these lines reveal large redward asymmetries near maximum infall velocity. The magnitude of these asymmetries and the period for which they are present are larger in l Car than in beta dor. The blueward asymmetries in the Halpha line in l Car are comparable in magnitude to the redward asymmetries while the other lines exhibit only small blueward asymmetries. A qualitative analysis of these line profiles with phase reveal no conclusive evidence for line doubling in these Cepheids. Evidence of emission is found in the Halpha and H Beta lines of beta dor and l car. The strength and duration of the emission is found to be greater in the longer period Cepheid. Although it is likely that this emission is shock-related, theoretical work is needed to determine the exact origin of the emission. A non-LTE radiative hydrodynamic model for l Car has been created. This atmosphere will be used in further work to calculate synthetic spectral line profiles which will aid the interpretation of our observational results.
14

Caractérisation des planètes extrasolaires et de leurs atmosphères (Spectroscopie des transits et échappement atmosphérique) / Characterization of extrasolar planets and their atmospheres (Spectroscopy of transits and atmospheric escape)

Bourrier, Vincent 04 September 2014 (has links)
Les Jupiters chauds sont des exoplanètes si proches de leur étoile que leur atmosphère peut perdre du gaz par échappement hydrodynamique. Les géantes gazeuses qui transitent sont un excellent moyen de comprendre ce processus, mais il faut étudier d'autres types de planètes pour déterminer son impact sur la population exoplanétaire. Cette thèse propose d'utiliser la spectroscopie du transit pour observer l'atmosphère de plusieurs planètes, étudier leurs propriétés et caractériser l'échappement hydrodynamique. Des raies de l'ultraviolet observées avec le télescope Hubble sont analysées avec le modèle numérique de la haute atmosphère que nous avons développé. Grâce à la raie Ly-? nous mettons en évidence les interactions énergétiques et dynamiques entre l'atmosphère des Jupiters chauds HD209458b et HD189733b et leurs étoiles. Nous étudions la dépendance de l'échappement à l'environnement d'une planète et à ses propriétés physiques, en observant une super-Terre et un Jupiter tiède dans le système 55Cnc. Grâce à des observations de HD209458b nous montrons que les raies du magnésium permettent de sonder la région de formation de l'échappement. Nous étudions le potentiel de la spectroscopie du transit dans le proche UV pour détecter de nouveaux cas d'échappement. Ce mécanisme est favorisé par la proximité d'une planète à son étoile, ce qui rend d'autant plus important la compréhension des processus de formation et de migration, qui peuvent être étudiés par l'alignement d'un système planétaire. Grâce à des mesures des spectrographes HARPS-N et SOPHIE nous étudions les alignements de 55Cnc e et du candidat Kepler KOI-12.01, dont nous cherchons aussi à valider la nature planétaire. / Hot Jupiters are exoplanets so close to their star that their atmosphere can lose gas because of hydrodynamic escape. Transiting gaseous giants are an excellent way to understand this mechanism, but it is necessary to study other types of planets to determine its impact on the exoplanetary population. This thesis aims at using transit spectroscopy to observe the atmosphere of several exoplanets, to study their properties and to contribute to the characterization of hydrodynamic escape. UV lines observed with the Hubble telescope are analyzed with the numerical model of upper atmospheres we developed. Using the Ly-? line we identify energetic and dynamical interactions between the atmospheres of the hot Jupiters HD209458b and HD189733b and their stars. We study the dependence of the escape on the environment of a planet and on its physical properties, through the observation of a super-Earth and a warm Jupiter in the 55 Cnc system. Using observations of HD209458b, we show that magnesium lines are a window on the region of formation of hydrodynamic escape. We study the potential of transit spectroscopy in the near-UV to detect new cases of atmospheric escape. This mechanism is fostered by the proximity of a planet to its star, which makes it even more important to understand the formation and migration processes that can be traced in the alignment of a planetary system. Using measures from the spectrographs HARPS-N and SOPHIE we study the alignments of 55 Cnc e and the Kepler candidate KOI 12.01, whose planetary nature we also seek to validate.
15

Outils pour l'analyse de données de vitesses radiales / Tools for radial velocity data analysis

Hara, Nathan 27 October 2017 (has links)
Lorqu'une étoile a des compagnons planétaires, elle décrit un mouvement quasi épicycloïdal autour du centre de masse du système. Si l'orientation du plan de l'orbite le permet, un observateur situé sur la Terre peut détecter la composante de ce mouvement sur la ligne de visée grâce à l'effet Doppler. Il mesure ainsi la ``vitesse radiale de l'étoile''. Si cette vitesse présente des variations périodiques suffisamment claires, la présence de planètes peut être inférée et leurs orbites contraintes. Une des difficultés de l'analyse de telles mesures est qu'une combinaison de signaux de plusieurs planètes et de divers bruits peut être confondue avec l'effet d'une planète en réalité inexistante. Après avoir présenté les effets à prendre en compte pour analyser des données de vitesses radiales, nous abordons ce problème. Pour limiter son occurrence, nous utilisons un algorithme de poursuite de base modifié, dont on démontre l'efficacité sur des signaux réels et simulés. Nous abordons ensuite le problème de l'estimation des paramètres orbitaux pour un système donné ainsi que leur distribution pour une population de planètes. On s'intéresse en particulier à l'excentricité, dont on montre qu'elle est d'autant plus surestimée que le modèle du signal est mauvais. Nous proposons des solutions pour une estimation robuste des paramètres orbitaux. / When a star is orbited by planetary companions, it describes a nearly epicyclic motion around the center of mass of the system. When the orientation of the orbital plane is appropriate, an observer on Earth can measure the velocity of the star along the line of sight by Doppler effect. If this ``radial velocity'' presents clear enough periodic variations, the presence of planets can be inferred and their orbit can be constrained. Detection and estimation of orbits is made difficult by the photon noise, the unpredictable variations of luminosity of the star as well as instrumental faults. In particular, signals from several planets can add coherently with the noises and mimic the effect of a planet absent from the system. After listing the relevant effects to make inference on exoplanets from radial velocity data, we tackle this problem. To limit its rate of occurrence, we use a modified basis pursuit algorithm, allowing to search for several signals simultaneously. The efficiency of the method is demonstrated on real and simulated signals. We then address the problem of orbital parameters estimation for a given system, as well as the estimation of their distribution on a planet population. We look in detail at the eccentricity, and show that its overestimation increases as the model moves away from the correct one. We suggest methods for robust inference of orbital parameters.
16

The impact of stellar magnetic activity on the radial velocity search of exoplanets

Wehrhahn, Ansgar January 2017 (has links)
Radial velocity measurements are critical in finding and confirming exoplanets. To confine the parameters of the planet we naturally want to minimise the errors on the measurement. However the observed measurement error is now on the same order as the precision of the instrument. This so called jitter is related to the stellar activity (Wright 2005), i.e. the magnetic field of the star. In this paper we investigate if we can discover any correlation between the radial velocity variation and the magnetic activity of the star using HARPSpol spectra for the two stars Epsilon Eridani and GJ674.
17

Extrasolar Planet Detection and Characterization With the KELT-North Transit Survey

Beatty, Thomas G. 30 December 2014 (has links)
No description available.
18

Advanced structural design for precision radial velocity instruments

Baldwin, Dan, Szentgyorgyi, Andrew, Barnes, Stuart, Bean, Jacob, Ben-Ami, Sagi, Brennan, Patricia, Budynkiewicz, Jamie, Chun, Moo-Young, Conroy, Charlie, Crane, Jeffrey D., Epps, Harland, Evans, Ian, Evans, Janet, Foster, Jeff, Frebel, Anna, Gauron, Thomas, Guzman, Dani, Hare, Tyson, Jang, Bi-Ho, Jang, Jeong-Gyun, Jordan, Andres, Kim, Jihun, Kim, Kang-Min, Mendes de Oliveira, Claudia, Lopez-Morales, Mercedes, McCracken, Kenneth, McMuldroch, Stuart, Miller, Joseph, Mueller, Mark, Oh, Jae Sok, Ordway, Mark, Park, Byeong-Gon, Park, Chan, Park, Sung-Joon, Paxson, Charles, Phillips, David, Plummer, David, Podgorski, William, Seifahrt, Andreas, Stark, Daniel, Steiner, Joao, Uomoto, Alan, Walsworth, Ronald, Yu, Young-Sam 22 July 2016 (has links)
The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars'. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (C 1E) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness to -weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.
19

Determining the Rotational and Orbital Velocities of Objects in the Solar System

Jones, Mark 01 May 2020 (has links)
Astronomers have been observing the night sky for many centuries to establish a better understanding for our universe and solar system. As part of their observations, astronomers characterize celestial bodies by fundamental properties such as mass, motion, and composition in order to provide further insight about the objects in question. As technology and science have evolved, the methods for measuring these properties have become more precise and accurate. One such methodology is known as spectroscopy, and it is a significant tool for observational astronomy. In this paper, we shall describe how we used astronomical spectroscopy to determine orbital and rotational velocities for various objects in our solar system. This method was implemented specifically using the facilities of the Harry D. Powell Observatory on the campus of East Tennessee State University.
20

Caractérisation des signaux d'activité stellaire dans le système multiplanétaire Gliese 229

Deslières, Ariane 12 1900 (has links)
Les exoplanètes peuvent être détectées par plusieurs méthodes. De celles-ci, la méthode des Vitesses Radiales (RV) est dite indirecte, car l'on observe le spectre lumineux de l'étoile hôte et non la planète directement. Or, plusieurs facteurs influencent les variations lumineuses d'une étoile hormis la présence d'un compagnon. La photosphère des étoiles comprend des régions plus sombres appelées taches stellaires causées par de forts champs magnétiques qui restreignent le déplacement de l'énergie vers la surface. Lorsque l'étoile tourne, elles se déplacent produisant ainsi des variations dans le spectre de l'étoile similaires à celles induites par les corps l'orbitant. C'est pourquoi la modélisation de l'activité stellaire est essentielle pour la recherche d'exoplanètes. Il existe maints indicateurs d'activité dont la photométrie et les bissectrices et le Full Width at Half Maximum (FWHM) obtenus du profil moyen des raies spectrales. Ils peuvent être modélisés à l'aide d'outils mathématiques comme les Processus Gaussiens (GP). L'étoile GL229 A est une naine rouge située à 5.75 parsecs autour de laquelle orbite la première naine brune, GL229 B, découverte par imagerie directe en 1995. À mi-chemin entre planètes géantes et étoiles naines, ces objets sous-stellaires n'ont pas acquis la masse nécessaire pour déclencher la fusion nucléaire de l'hydrogène lors de leur formation. Le système GL229 fut aussi observé par différents télescopes dotés d'instruments permettant d'obtenir des mesures de RV. Ceci mena, en 2014 et 2020, à la détection de deux exoplanètes, GL229 A b et A c aux masses minimales de 32 et 7 masses terrestres. Ce mémoire présente une réanalyse des RV obtenues avec HARPS, un spectrographe échelle. En modélisant le FWHM avec un GP, il peut être démontré que les signaux précédemment identifiés comme d'origine planétaire correspondent en fait à des signaux d'activité stellaire. / Several methods can detect exoplanets. Of these, the Radial Velocity (RV) method is said to be indirect because the light spectrum of the host star is observed and not the planet directly. However, several factors influence a star's luminous variations apart from a companion's presence. The photosphere of stars contains darker regions called star spots caused by strong magnetic fields that restrict the movement of energy to the surface. When the star rotates, these spots move, producing variations in the star's spectrum similar to those induced by the bodies orbiting it. Hence, stellar modelling activity is essential when searching for exoplanets. Many activity indicators, including photometry and bisectors and Full Width at Half Maximum (FWHM) obtained from the average spectral line profiles, can be modelled using tools such as Gaussian Processes (GP). GL229 A is a red dwarf located at 5.75 parsecs around which orbits a brown dwarf, GL229 B, firstly discovered through direct imaging in 1995. Halfway between giant planets and dwarf stars, these substellar objects did not acquire the mass necessary to trigger nuclear hydrogen fusion during their formation. The GL229 system was also observed by various telescopes equipped with instruments making it possible to obtain RV measurements. This led, in 2014 and 2020, to the detection of two exoplanets, GL229 A b and A c, with minimum masses of 32 and 7 Earth masses. This thesis presents a re-analysis of the RVs obtained from HARPS spectra, an échelle spectrograph, for the Gliese 229 system. By modelling the FWHM with a GP, we show that previously identified planetary signals are not real and result from stellar activity.

Page generated in 0.0437 seconds