1 |
The Supernovae Analysis Application (SNAP)Bayless, Amanda J., Fryer, Chris L., Wollaeger, Ryan, Wiggins, Brandon, Even, Wesley, Rosa, Janie de la, Roming, Peter W. A., Frey, Lucy, Young, Patrick A., Thorpe, Rob, Powell, Luke, Landers, Rachel, Persson, Heather D., Hay, Rebecca 06 September 2017 (has links)
The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginning to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.
|
2 |
HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C II] VARIATIONS IN GALAXIES AT REDSHIFTS z=1-3Malhotra, Sangeeta, Rhoads, James E., Finkelstein, K., Yang, Huan, Carilli, Chris, Combes, Françoise, Dassas, Karine, Finkelstein, Steven, Frye, Brenda, Gerin, Maryvonne, Guillard, Pierre, Nesvadba, Nicole, Rigby, Jane, Shin, Min-Su, Spaans, Marco, Strauss, Michael A., Papovich, Casey 20 January 2017 (has links)
We observed the [C II] line in 15 lensed galaxies at redshifts 1 < z <. 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 sigma or better. High magnifications enable even modestly luminous galaxies to be detected in [C II] with Herschel. The [C II] luminosity in this sample ranges from 8x10(7) L-circle dot to 3.7x10(9) L-circle dot (after correcting for magnification), confirming that [C II] is a strong tracer of the ISM at high redshifts. The ratio of the [C II] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C II]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C II]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C II]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C II]/FIR correlates most strongly with dust temperature. The [C II] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.
|
3 |
High-energy emission and recent afterglow studies of gamma-ray burstsBarniol Duran, Rodolfo Jose 16 June 2011 (has links)
Gamma-ray Bursts (GRBs) are powerful explosions that emit
most of their energy, as their name suggests, in gamma-rays of typical energies
of about 1 MeV. This emission lasts for about two minutes or less and it is called the prompt emission. The isotropic energy radiated in GRBs is equivalent to the energy that the
Sun will radiate in its entire lifetime. After decades of studying
this cosmological phenomenon, we have come to learn that it involves
a collimated and relativistic jet. Also, we know that they
radiate energy in the X-ray, optical and radio bands for days, weeks and years, respectively, which is called the
afterglow. Recently, NASA's Fermi Satellite was launched and,
in addition to MeV photons, it detected GeV photons from these astrophysical sources.
We show that these GeV photons are produced when the GRB jet interacts with the medium
that surrounds it: the external forward shock model. We arrive at this conclusion
not only by studying the GeV emission, but also by studying the afterglow observations
(Chapter 2). We corroborate this model by studying the electron acceleration
in the external forward shock model and find that electrons can radiate at the maximum observed
energy of ~ 10 GeV (Chapter 3). We also provide an extensive analysis of the most recent
afterglow observations of GRB 090902B within the same
framework of an external forward shock origin. We find
that the data for this burst requires a small deviation from the
traditionally used power-law electron energy distribution, however,
our previous results remain unchanged (Chapter 4). To conclude,
we use the end of the prompt emission phase, which exhibits a
steep X-ray temporal decay, to constrain the behavior of the
central engine responsible for launching the relativistic jet (Chapter 5). / text
|
4 |
Sharp Polarimetric Eyes: More Trees than Forest?Smith, Paul 07 September 2016 (has links)
The Fermi Gamma-ray Space Telescope (Fermi) has focused the intensive multi-wavelength and international observational effort on blazars since it was launched in 2008. Part of this effort involves systematic monitoring of the highly variable polarization of the continuum emission from these objects. These observations are valuable in that they provide direct information on the degree of ordering and orientation on the sky of the magnetic field within the non-thermal emission region(s). Unfortunately, it is not yet possible to measure the polarization of the inverse-Compton continuum, only that of the lower-energy synchrotron emission. The inability to directly compare the polarization of the two dominant continuum sources in blazars is a drawback and leads to more ambiguities in determining their relative locations. There are many compelling examples of strong connections between -ray, X-ray, UV/optical/IR, and radio behavior in blazars that suggest the same region produces much of the observed emission at all wavelengths at least some of the time. However, the wealth of polarization behavior seen relative to flux changes invariably results in a complex situation that is difficult to interpret and model. The long-term blazar monitoring program undertaken at Steward Observatory is designed to primarily obtain accurate optical polarimetry of -ray-bright blazars during the Fermi mission with the goal of gaining important insights into the jet structure and physics of these objects. Data from this program are available to all researchers as soon as reductions are completed. I briefly detail the current status and progress of the program and the data products available. Although the wide variety of polarization behavior in blazars adds another layer of complexity to an already difficult problem, I summarize several important conclusions that can be drawn from the polarization information gathered during the Fermi era.
|
5 |
Prompt emission in Gamma-ray bursts; Photospheric Radiation from Synchrotron-Like spectraVitols, Erik January 2022 (has links)
Gamma-ray bursts (GRBs) are the most luminous phenomena in the Universe, explosions whoseenergy is generated by supernovae or mergers of dense objects such as neutron stars. The GRBemission is divided into the prompt emission phase characterized by γ-ray radiation and the afterglowof lower energy radiation. The prompt emission phase is still not understood; as of now, there aretwo leading descriptions: the photospheric- and the synchrotron models. The synchrotron model hashad great success in describing GRB spectra, and specifically some of the brightest ones, although notwithout issues such as some observations being at odds with theory. On the other hand, photosphericmodels have had problems too of how to broaden the spectrum in order to explain the observeddata. One explanation for this broadening is that Radiation Mediated Shocks (RMSs) dissipate energybelow the photosphere. In this report, a time resolved spectral analysis of the prompt emission of GRB160625B – a very bright GRB known to produce synchrotron-like emission – is done. Komrad is animplementation of the Kompaneets RMS Approximation (KRA), which is a dissipative photosphericmodel. Komrad is then used to fit a photospheric model to the prompt emission of GRB 160625Bin order to explore whether photospheric models can account for synchrotron-like emission spectra.Great statistical support is found for the photospheric model in comparison to standard GRB fittingfunctions as well as a synchrotron function which is indicative of the photospheric model being able toexplain a synchrotron-like spectra.
|
6 |
EVOLUTION OF HIGH-ENERGY PARTICLE DISTRIBUTION IN MATURE SHELL-TYPE SUPERNOVA REMNANTSZeng, Houdun, Xin, Yuliang, Liu, Siming, Jokipii, J. R., Zhang, Li, Zhang, Shuinai 10 January 2017 (has links)
Multi-wavelength observations of mature supernova remnants (SNRs), especially with recent advances in gamma-ray astronomy, make it possible to constrain energy distribution of energetic particles within these remnants. In consideration of the SNR origin of Galactic cosmic rays and physics related to particle acceleration and radiative processes, we use a simple one-zone model to fit the nonthermal emission spectra of three shell-type SNRs located within 2 degrees on the sky: RX J1713.7-3946, CTB 37B, and CTB 37A. Although radio images of these three sources all show a shell (or half-shell) structure, their radio, X-ray, and gamma-ray spectra are quite different, offering an ideal case to explore evolution of energetic particle distribution in SNRs. Our spectral fitting shows that (1) the particle distribution becomes harder with aging of these SNRs, implying a continuous acceleration process, and the particle distributions of CTB 37A and CTB 37B in the GeV range are harder than the hardest distribution that can be produced at a shock via the linear diffusive shock particle acceleration process, so spatial transport may play a role; (2) the energy loss timescale of electrons at the high-energy cutoff due to synchrotron radiation appears to be always a bit (within a factor of a few) shorter than the age of the corresponding remnant, which also requires continuous particle acceleration; (3) double power-law distributions are needed to fit the spectra of CTB 37B and CTB 37A, which may be attributed to shock interaction with molecular clouds.
|
7 |
A SEARCH FOR SPECTRAL HYSTERESIS AND ENERGY-DEPENDENT TIME LAGS FROM X-RAY AND TeV GAMMA-RAY OBSERVATIONS OF Mrk 421Abeysekara, A. U., Archambault, S., Archer, A., Benbow, W., Bird, R., Buchovecky, M., Buckley, J. H., Bugaev, V., Cardenzana, J. V, Cerruti, M., Chen, X., Ciupik, L., Connolly, M. P., Cui, W., Eisch, J. D., Falcone, A., Feng, Q., Finley, J. P., Fleischhack, H., Flinders, A., Fortson, L., Furniss, A., Griffin, S., Håkansson, M. HN., Hanna, D., Hervet, O., Holder, J., Humensky, T. B., Kaaret, P., Kar, P., Kertzman, M., Kieda, D., Krause, M., Kumar, S., Lang, M. J., Maier, G., McArthur, S., McCann, A., Meagher, K., Moriarty, P., Mukherjee, R., Nieto, D., Ong, S. OR. A., Otte, A. N., Park, N., Pelassa, V., Pohl, M., Popkow, A., Pueschel, E., Ragan, K., Reynolds, P. T., Richards, G. T., Roache, E., Sadeh, I., Santander, M., Sembroski, G. H., Shahinyan, K., Staszak, D., Telezhinsky, I., Tucci, J. V., Tyler, J., Wakely, S. P., Weinstein, A., Wilhelm, A., Williams, D. A., Ahnen, M. L., Ansoldi, S., Antonelli, L. A., Antoranz, P., Arcaro, C., Babic, A., Banerjee, B., Bangale, P., Almeida, U. Barres de, Barrio, J. A., González, J. Becerra, Bednarek, W., Bernardini, E., Berti, A., Biasuzzi, B., Biland, A., Blanch, O., Bonnefoy, S., Bonnoli, G., Borracci, F., Bretz, T., Carosi, R., Carosi, A., Chatterjee, A., Colin, P., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., Cumani, P., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., de Oña Wilhelmi, E., Di Pierro, F., Doert, M., Domínguez, A., Prester, D. Dominis, Dorner, D., Doro, M., Einecke, S., Glawion, D. Eisenacher, Elsaesser, D., Engelkemeier, M., Ramazani, V. Fallah, Fernández-Barral, A., Fidalgo, D., Fonseca, M. V., Font, L., Fruck, C., Galindo, D., López, R. J. García, Garczarczyk, M., Gaug, M., Giammaria, P., Godinović, N., Gora, D., Guberman, D., Hadasch, D., Hahn, A., Hassan, T., Hayashida, M., Herrera, J., Hose, J., Hrupec, D., Hughes, G., Idec, W., Kodani, K., Konno, Y., Kubo, H., Kushida, J., Lelas, D., Lindfors, E., Lombardi, S., Longo, F., López, M., López-Coto, R., Majumdar, P., Makariev, M., Mallot, K., Maneva, G., Manganaro, M., Mannheim, K., Maraschi, L., Marcote, B., Mariotti, M., Martínez, M., Mazin, D., Menzel, U., Mirzoyan, R., Moralejo, A., Moretti, E., Nakajima, D., Neustroev, V., Niedzwiecki, A., Rosillo, M. Nievas, Nilsson, K., Nishijima, K., Noda, K., Nogués, L., Nöthe, M., Paiano, S., Palacio, J., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J. M., Paredes-Fortuny, X., Pedaletti, G., Peresano, M., Perri, L., Persic, M., Poutanen, J., Moroni, P. G. Prada, Prandini, E., Puljak, I., Garcia, J. R., Reichardt, I., Rhode, W., Ribó, M., Rico, J., Saito, T., Satalecka, K., Schroeder, S., Schweizer, T., Shore, S. N., Sillanpää, A., Sitarek, J., Snidaric, I., Sobczynska, D., Stamerra, A., Strzys, M., Surić, T., Takalo, L., Tavecchio, F., Temnikov, P., Terzić, T., Tescaro, D., Teshima, M., Torres, D. F., Torres-Albà, N., Toyama, T., Treves, A., Vanzo, G., Acosta, M. Vazquez, Vovk, I., Ward, J. E., Will, M., Wu, M. H., Zanin, R., Hovatta, T., de la Calle Perez, I., Smith, P. S., Racero, E., Baloković, M. 22 December 2016 (has links)
Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three " target-of-opportunity" observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e. g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at greater than or similar to 4 x 10(-4) Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.
|
8 |
The WEBT Campaign on the Blazar 3C 279 in 2006Böttcher, M., Basu, S., Joshi, M., Villata, M., Arai, A., Aryan, N., Asfandiyarov, I. M., Bach, U., Bachev, R., Berduygin, A., Blaek, M., Buemi, C., Castro-Tirado, A. J., De Ugarte Postigo, A., Frasca, A., Fuhrmann, L., Hagen-Thorn, V. A., Henson, G., Hovatta, T., Hudec, R., Ibrahimov, M., Ishii, Y., Ivanidze, R., Jelínek, M., Kamada, M., Kapanadze, B., Katsuura, M., Kotaka, D. 01 December 2007 (has links)
The quasar 3C 279 was the target of an extensive multiwavelength monitoring campaign from 2006 January through April. An optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration was organized around target-of-opportunity X-ray and soft γ-ray observations with Chandra and INTEGRAL in 2006 mid-January, with additional X-ray coverage by RXTE and Swift XRT. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic timescale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other, while there was no obvious correlation between the optical and radio variability. After the ToO trigger, the optical flux underwent a remarkably clean quasi-exponential decay by about 1 mag, with a decay timescale of T d ∼ 12.8 days. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter wavelength behind longer wavelength variability throughout the RVB wavelength ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of α0 ∼ 1.5-2.0, may indicate a highly oblique magnetic field configuration near the base of the jet, leading to inefficient particle acceleration and a very steep electron injection spectrum. An alternative explanation through a slow (timescale of several days) acceleration mechanism would require an unusually low magnetic field of B ≲ 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C 279 and other flat-spectrum radio quasars with similar properties.
|
9 |
Time Dependent Leptonic and Lepto-Hadronic Modeling of Blazar EmissionDIltz, Christopher S. 08 July 2016 (has links)
No description available.
|
10 |
M 87 at metre wavelengths: the LOFAR pictureSmirnov, O, De Gasperin, F, Orrú, E, Murgia, M, Merloni, A, Falcke, H, Beck, R, Beswick, R, Bîrzan, L, Bonafede, A, Brüggen, M January 2012 (has links)
Context.M 87 is a giant elliptical galaxy located in the centre of the Virgo cluster, which harbours a supermassive black hole of mass 6.4 × 109 M⊙, whose activity is responsible for the extended (80 kpc) radio lobes that surround the galaxy. The energy generated by matter falling onto the central black hole is ejected and transferred to the intra-cluster medium via a relativistic jet and morphologically complex systems of buoyant bubbles, which rise towards the edges of the extended halo. Aims. To place constraints on past activity cycles of the active nucleus, images of M 87 were produced at low radio frequencies never explored before at these high spatial resolution and dynamic range. To disentangle different synchrotron models and place constraints on source magnetic field, age and energetics, we also performed a detailed spectral analysis of M 87 extended radio-halo. Methods. We present the first observations made with the new Low-Frequency Array (LOFAR) of M 87 at frequencies down to 20 MHz. Three observations were conducted, at 15−30 MHz, 30−77 MHz and 116−162 MHz. We used these observations together with archival data to produce a low-frequency spectral index map and to perform a spectral analysis in the wide frequency range 30 MHz–10 GHz. Results. We do not find any sign of new extended emissions; on the contrary the source appears well confined by the high pressure of the intra-cluster medium. A continuous injection of relativistic electrons is the model that best fits our data, and provides a scenario in which the lobes are still supplied by fresh relativistic particles from the active galactic nuclei. We suggest that the discrepancy between the low-frequency radio-spectral slope in the core and in the halo implies a strong adiabatic expansion of the plasma as soon as it leaves the core area. The extended halo has an equipartition magnetic field strength of ≃10 μG, which increases to ≃13 μG in the zones where the particle flows are more active. The continuous injection model for synchrotron ageing provides an age for the halo of ≃40 Myr, which in turn provides a jet kinetic power of 6−10 × 1044 erg s-1.
|
Page generated in 0.0848 seconds