• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 125
  • 60
  • 59
  • 8
  • 7
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 742
  • 439
  • 105
  • 98
  • 89
  • 87
  • 79
  • 76
  • 52
  • 49
  • 49
  • 48
  • 48
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

G.R.A.C.E. satellite thermal model

Jones, Fraser Black III 16 March 2015 (has links)
I developed a thermal model of the Gravity Recovery and Climate Experiment satellite for the Center for Space Research to use in verifying their thermal models and for developing the next generation of satellites for their experiments. I chose COMSOL to model the satellite and used ProEngineer and 3Ds Max to generate the mesh from a .STEP file provided by DaimlerChrysler. I adjusted the model based on previous computer models and actual telemetry data from the GRACE satellite provided from 2002 through 2008. Using the model, I developed a sensitivity analysis of the satellites key thermal environment components and used that to recommend design changed for the next generation of satellites. Special attention should be given to redesigning the Star Camera Arrays and the heat transfer between the Main Equipment Platform and the Radiator. / text
252

Physically Modeling High-Redshift Ultraluminous Infrared Galaxies

Hayward, Christopher 02 January 2013 (has links)
We have used a combination of hydrodynamical simulations, dust radiative transfer, and an empirically based analytical model for galaxy number densities and merger rates in order to physically model the bright high-redshift submillimeter-selected galaxy (SMG) population. We report the results of three projects: In the first we study the dependence of a galaxy’s observed-frame submillimeter (submm) flux on its physical properties. One of our principal conclusions is that the submm flux scales significantly more weakly with star formation rate for starbursts than for quiescently star-forming galaxies. Consequently, we argue that the SMG population is not exclusively merger-induced starbursts but rather a mix of merger-induced starbursts, early-stage mergers where two quiescently star-forming disk galaxies are blended into one submm source ("galaxy-pair SMGs"), and isolated disk galaxies. In the second work we present testable predictions of this model by demonstrating how quiescently star-forming and starburst SMGs can be distinguished from integrated data alone. Starbursts tend to have higher luminosity, effective dust temperature, global star formation efficiency \((L_{IR}/M_{gas})\), and infrared excess \((L_{IR}/L_{FUV})\) and tend to lie significantly above the star formation rate-stellar mass relation defined by quiescently star-forming galaxies. These diagnostics can be used to observationally determine the relative contribution of quiescently star-forming and starburst galaxies to the SMG population. In the final work we present the SMG number density, cumulative number counts, and redshift distribution predicted by our model. We show that, contrary to previous claims, the observed SMG number counts do not provide evidence for a top-heavy initial mass function. We also show that starbursts and galaxy-pair SMGs both contribute significantly to the bright SMG counts, whereas isolated disks contribute significantly only at the faint end. / Astronomy
253

Modeling Spatially and Spectrally Resolved Observations to Diagnose the Formation of Elliptical Galaxies

Snyder, Gregory Frantz 30 September 2013 (has links)
In extragalactic astronomy, a central challenge is that we cannot directly watch what happens to galaxies before and after they are observed. This dissertation focuses on linking predictions of galaxy time-evolution directly with observations, evaluating how interactions, mergers, and other processes affect the appearance of elliptical galaxies. The primary approach is to combine hydrodynamical simulations of galaxy formation, including all major components, with dust radiative transfer to predict their observational signatures. The current paradigm implies that a quiescent elliptical emerges following a formative starburst event. These trigger accretion onto the central supermassive black hole (SMBH), which then radiates as an active galactic nucleus (AGN). However, it is not clear the extent to which SMBH growth is fueled by these events nor how important is their energy input at setting the appearance of the remnant. This thesis presents results drawing from three phases in the formation of a typical elliptical: 1) I evaluate how to disentangle AGN from star formation signatures in mid-infrared spectra during a dust-enshrouded starburst, making testable predictions for robustly tracing SMBH growth with the James Webb Space Telescope ; 2) I develop a model for the rate of merger-induced post-starburst galaxies selected from optical spectra, resolving tension between their observed rarity and merger rates from other estimates; and 3) I present results from Hubble Space Telescope imaging of elliptical galaxies in galaxy clusters at 1 < z < 2, the precursors of present-day massive clusters with \(M \sim10^{15}M_{\odot}\), demonstrating that their stars formed over an extended period and ruling out the simplest model for their formation history. These results lend support to a stochastic formation history for ellipticals driven by mergers or interactions. However, significant uncertainties remain in how to evaluate the implications of galaxy appearance, in particular their morphologies across cosmic time. In the final chapter, I outline an approach to build a "mock observatory" from cosmological hydrodynamical simulations, with which observations of all types, including at high spatial and spectral resolutions, can be brought to bear in directly constraining the physics of galaxy formation and evolution. / Astronomy
254

Studying star formation at low and high redshift with integral field spectroscopy

Blanc, Guillermo 01 June 2011 (has links)
In this thesis I focus mainly in studying the process of star formation in both high redshift, and local star forming galaxies, by using an observational technique called integral field spectroscopy (IFS). Although these investigations are aimed at studying the star formation properties of these objects, throughout this work I will also discuss the geometric, kinematic, and chemical structures in the inter-stellar medium of these galaxies, which are intimately connected with the process of star formation itself. The studies presented here were conducted under the umbrella of two different projects. First, the HETDEX Pilot Survey for Emission Line Galaxies, where I have studied the properties of Ly-alpha emitting galaxies across the 2<z<4 range, with an emphasis in trying to understand the process by which Ly-alpha photons, produced in large quantities in the active star forming regions, are able to escape the ISM of these objects, allowing us to detect them in the Ly-alpha line. The second project from which results are presented here is the VIRUS-P Exploration of Nearby Galaxies (VENGA), an ongoing campaign to obtain spatially resolved spectroscopy over a broad wavelength range for large portions of the disks of 30 nearby spiral galaxies. In this thesis, the VENGA data is used to study the physical parameters that set the rate of star formation in the different environments present within galaxies in the local universe. / text
255

Integral field spectroscopy as a probe of galaxy evolution

Adams, Joshua Jesse 22 September 2011 (has links)
Optical spectroscopy and modeling are applied to four independent problems related to the structure and evolution of galaxies. The problems cover a broad range of look-back time and galaxy mass. Integral field spectroscopy with low surface brightness sensitivity is the tool employed to advance our understanding of the distribution, interplay, and evolution of the stars, dark matter, and gas. First, I review development and commissioning work done on the VIRUS-P instrument. I then present a large sample of galaxies over redshifts 1.9<z<3.8 selected solely through their Lyman-alpha flux. This work is done as a pilot survey to the Hobby-Eberly Telescope Dark Energy eXperiment (HETDEX). I create a redshift catalog of 397 galaxies discovered over 169 square arcsecs taken over 113 nights. Second, I study a high redshift (z=3.4) radio galaxy halo by mapping the Lyman-alpha velocity field. The signal extends far beyond the optical and radio extents of the system. Plausible, but non-unique, models are made to explain the Lyman-alpha signal that require a very large reservoir of neutral hydrogen (>= 10E12 solar masses). Third, I study the dark matter halo profile in a nearby late-type dwarf galaxy in the context of the "core-cusp" controversy. N-body simulations predict such galaxies to have cuspy dark matter halos, while HI rotation curves and more recent hydrodynamical simulations indicate that such halos may instead be strongly cored. I measure the spatially resolved stellar velocity field and fit with two-integral Jeans models. A cuspy halo is preferred from the stellar kinematics. The mass models from stellar and gaseous kinematics disagree. The gas models assume circular motion in an infinitely thin disk which is likely unrealistic. The stellar kinematics presented are the first measurements of a collision-less tracer in such galaxies. Fourth, I attempt to measure diffuse H-alpha emission, fluoresced by the metagalactic UV background, in the outskirts of a nearby gas rich galaxy. I do not make a detection, but the deep flux limit over a large field-of-view places the most sensitive limit to-date on the UV background's photoionization rate of Gamma(z=0)<1.7x10E-14 1/s at 5 sigma certainty. / text
256

Calibrated, Multiband Radiometric Measurements of the Optical Radiation from Lightning

Quick, Mason G. January 2014 (has links)
Calibrated, multiband radiometric measurements of the optical radiation emitted by rocket-triggered lightning (RTL) have been made in the ultraviolet (UV, 200-360 nm), the visible and near infrared (VNIR, 400-1000 nm), and the long wave infrared (LWIR, 8-12 µm) spectral bands. Measurements were recorded from a distance of 198 m at the University of Florida International Center for Lightning Research and Testing (ICLRT) during the summers of 2011 and 2012. The ICLRT provided time-correlated measurements of the current at the base of the RTL channels. Following the onset of a return stroke, the dominant mechanism for the initial rise of the UV and VNIR waveforms was the geometrical growth of the channel in the field-of-view of the sensors. The UV emissions peaked about 0.7 µs after the current peak, with a peak spectral power emitted by the source per unit length of channel of 10 ± 7 kW/(nm-m) in the UV. The VNIR emissions peaked 0.9 µs after the current peak, with a spectral power of at 7 ± 4 kW/(nm-m). The LWIR emissions peaked 30-50 µs after the current peak, and the mean peak spectral power was 940 ± 380 mW/(nm-m), a value that is about 4 orders of magnitude lower than the other spectral band emissions. In some returns strokes the LWIR peak coincides with a secondary maximum in the VNIR band that occurs during a steady decrease in channel current. Examples of the optical waveforms in each spectral band are shown as a function of time and are discussed in the context of the current measured at the channel base. Source power estimates in the VNIR band have a mean and standard deviation of 2.5 ± 2.2 MW/m and are in excellent agreement with similar estimates of the emission from natural subsequent strokes that remain in a pre-existing channel which have a mean and standard deviation of 2.3 ± 3.4 MW/m. The peak optical power emitted by RTL in the UV and VNIR bands are observed to be proportional to the square of the peak current at the channel base. The same trend was found for natural lightning using peak currents estimates provided by the National Lightning Detection Network. Ratios of the optical power to the electromagnetic power emitted at the time of peak current suggest the radiative efficiency in the VNIR band is a few percent during the early onset of a return stroke. The majority of return strokes in RTL are found to emit most of their optical energy during the initial impulse phase.
257

Radiation And Dynamics In Titan's Atmosphere: Investigations Of Titan's Present And Past Climate

Lora, Juan Manuel January 2014 (has links)
This dissertation explores the coupling between radiative and three-dimensional dynamical processes in the atmosphere of Titan, and their impact on the seasonal climate and recent paleoclimate. First, a simple calculation is used to demonstrate the atmospheric attenuation on the distribution of insolation. The maximum diurnal-mean surface insolation does not reach the polar regions in summertime, and this impacts both surface temperatures and their destabilizing effect on the atmosphere. Second, a detailed two-stream, fully non-gray radiative transfer model, written specifically for Titan but with high flexibility, is used to calculate radiative fluxes and the associated heating rates. This model reproduces Titan's temperature structure from the surface through the stratopause, over nearly six decades of pressure. Additionally, a physics parameterizations package is developed for Titan, in part based on similar methods from Earth atmospheric models, for use in a Titan general circulation model (GCM). Simulations with this model, including Titan's methane cycle, reproduce two important observational constraints---Titan's temperature profile and atmospheric superrotation---that have proven difficult to satisfy simultaneously for previous models. Simulations with the observed distribution of seas are used to examine the resulting distribution of cloud activity, atmospheric humidity, and temperatures, and show that these are consistent with dry mid- and low-latitudes, while the observed polar temperatures are reproduced as a consequence of evaporative cooling. Analysis of the surface energy budget shows that turbulent fluxes react to the surface insolation, confirming the importance of its distribution. Finally, the GCM is used to simulate Titan's climate during snapshots over the past 42 kyr that capture the amplitude range of variations in eccentricity and longitude of perihelion. The results show that the atmosphere is largely insensitive to orbital forcing, and that it invariably transports methane poleward, suggesting Titan's low-latitudes have been deserts for at least hundreds of thousands of years. In detail, seasonal asymmetries do affect the distribution of methane, moving methane to the pole with the weaker summer, though orbital variations do not imply a long-period asymmetry. If the timescale for the atmosphere to transport the surface liquid reservoir is sufficiently short, this explains the observed north-south dichotomy of lakes and seas.
258

The Molecular Interstellar Medium from z=0-6

Narayanan, Desika T January 2007 (has links)
I investigate the emission properties of the molecular interstellar medium in protoplanetary disks and galaxy mergers, though focus largely on the latter topic. I utilize both numerical models as well as observations to relate the emission characteristics to physical models for the formation and evolution of gas giant planets and galaxies. The main results of this thesis follow. (1) Gas giant protoplanets may be detectable via self-absorption signatures in molecular emission lines with sufficiently high critical density. Given the spatial resolution of e.g. ALMA, gas giant planets in formation may be directly imageable. (2) Starburst and AGN feedback-driven winds in galaxies can leave imprints on the molecular line emission properties via morphological outflows and high velocity peaks in the emission line spectra. Methods for distinguishing between high velocity peaks driven by dynamics versus those driven by winds are discussed. (3) CO line widths on average trace the virial velocity of z ∼ 6 quasar host halos. Thus, if the earliest quasars formed in ∼1013 M ⊙ halos, they are predicted to have broad molecular line widths. Selection effects may exist which tend quasars selected for optical luminosity toward molecular line widths narrower than the slightline-dependent mean. (4) Using the SMT, I observe a roughly linear relation between infrared luminosity and CO (J=3-2) luminosity in local galaxies confirming the results of recently observed L(IR)-HCN (J=1-0) relations. Subsequent modeling shows that observed SFR-molecular line luminosity relations owe to the average fraction of subthermally excited gas in galaxies, and are simply reflective of the assumed Schmidt law governing the SFR.
259

Collisional-radiative and macroscopic models for the thermochemical relaxation of non-equilibrium hypersonic flows

Guy, Aurélien 16 December 2013 (has links) (PDF)
The thermo-chemical relaxation of nitrogen hypersonic flows behind strong shocks and in nozzle expansions is investigated with 1D flow simulations and detailed vibrational kinetics. This work aims at deriving from detailed vibrational models accurate reduced models easy to implement in multidimensional reentry flow codes. First, nonequilibrium couplings between vibrational excitation, dissociation and recombination reactions are considered. Vibrational kinetics is described using accurate vibrational state-to-state rate constant databases of the literature completed with the forced harmonic oscillator model. The key role of multiquanta vibration-translation processes on the relaxation of the vibrational distribution function and the dissociation/recombination processes is put forward behind shocks and in nozzles. The vibrational distributions, which deviate strongly from equilibrium for nozzle expansions, are driven by vibration-translation processes and dissociation/recombination processes. A macroscopic model using groups of vibrational levels is developed to derive consistently the chemical and vibrational energy source terms from the vibrational state-to-state database.This model successfully reproduces the thermal, chemical and vibrational distribution function dynamics predicted by the state-to-state model with one group of levels behind a shock wave, and with three groups of levels in nozzle expansions. In a second step, the detailed vibrational model is extended to ionized nitrogen flows, including in particular a detailed modeling of the resonant electronvibration processes. Behind shocks, these processes control the rate of ionization by feeding energy to the electrons, up until the time when the elastic electron-ion exchanges takes over. It is shown that the widely used assumption of equilibrium between the electron and vibration temperatures predicts a too fast relaxation behind shock waves. In nozzle expansions, it is shown that for low electron concentration, the electron temperature is driven by electronvibration processes. Moreover, it is found that electrons are strongly coupled to low vibrational levels, and that more levels are coupled when the electron temperature increases. Coupling of the flow field with radiation is performed using the tangent slab approximation, and it is shown that the population of a metastable and two higher electronic levels are strongly impacted. Finally, the macroscopic model is extended to ionized nitrogen flows and is successfully applied on shock waves with one group of levels and with three groups of levels in nozzle expansions. In particular, the proposed macroscopic model represents more accurately the electron-vibration coupling than the widely used Landau-Teller model.
260

Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies

Yi, Bingqi 16 December 2013 (has links)
This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape and refractive index, the influence of ice particle surface roughening on the global cloud radiative effect, and the simulations of the global contrail radiative forcing. In the first part of this dissertation, the effects of dust non-spherical shape on radiative transfer simulations are investigated. We utilize a spectral database of the single-scattering properties of tri-axial ellipsoidal dust-like aerosols and determined a suitable dust shape model. The radiance and flux differences between the spherical and ellipsoidal models are quantified, and the non-spherical effect on the net flux and heating rate is obtained over the solar spectrum. The results indicate the particle shape effect is related to the dust optical depth and surface albedo. Under certain conditions, the dust particle shape effect contributes to 30% of the net flux at the top of the atmosphere. The second part discusses how the ice surface roughening can exert influence on the global cloud radiative effect. A new broadband parameterization for ice cloud bulk scattering properties is developed using severely roughened ice particles. The effect of ice particle surface roughness is derived through simulations with the Fu-Liou and RRTMG radiative transfer codes and the Community Atmospheric Model. The global averaged net cloud radiative effect due to surface roughness is around 1.46 Wm-2. Non-negligible increase in longwave cloud radiative effect is also found. The third part is about the simulation of global contrail radiative forcing and its sensitivity studies using both offline and online modeling frameworks. Global contrail distributions from the literature and Contrail Cirrus Prediction Tool are used. The 2006 global annual averaged contrail net radiative forcing from the offline model is estimated to be 11.3 mW m^(-2), with the regional contrail radiative forcing being more than ten times stronger. Sensitivity tests show that contrail effective size, contrail layer height, the model cloud overlap assumption, and contrail optical properties are among the most important factors.

Page generated in 0.0438 seconds