• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 125
  • 60
  • 59
  • 8
  • 7
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 742
  • 439
  • 105
  • 98
  • 89
  • 87
  • 79
  • 76
  • 52
  • 49
  • 49
  • 48
  • 48
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Sustainability of multimodal intercity transportation using a hybrid system dynamics and agent-based modeling approach

Hivin, Ludovic F. 12 January 2015 (has links)
Demand for intercity transportation has increased significantly in the past decades and is expected to continue to follow this trend in the future. In the meantime, concern about the environmental impact and potential climate change associated with this demand has grown, resulting in an increasing importance of climate impact considerations in the overarching issue of sustainability. This results in discussions on new regulations, policies and technologies to reduce transportation's climate impact. Policies may affect the demand for the different transportation modes through increased travel costs, increased market share of more fuel efficient vehicles, or even the introduction of new modes of transportation. However, the effect of policies and technologies on mobility, demand, fleet composition and the resulting climate impact remains highly uncertain due to the many interdependencies. This motivates the creation of a parametric modeling and simulation environment to explore a wide variety of policy and technology scenarios and assess the sustainability of transportation. In order to capture total transportation demand and the potential mode shifts, a multimodal approach is necessary. The complexity of the intercity transportation System-of-Systems calls for a hybrid Agent-Based Modeling and System Dynamics paradigm to better represent both micro-level and macro-level behaviors. Various techniques for combining these paradigms are explored and classified to serve as a hybrid modeling guide. A System Dynamics approach is developed, that integrates socio-economic factors, mode performance, aggregated demand and climate impact. It is used to explore different policy and technology scenarios, and better understand the dynamic behavior of the intercity transportation System-of-Systems. In order to generate the necessary data to create and validate the System Dynamics model, an Agent-Based model is used due to its capability to better capture the behavior of a collection of sentient entities. Equivalency of both models is ensured through a rigorous cross-calibration process. Through the use of fleet models, the fuel burn and life cycle emissions from different modes of transportation are quantified. The radiative forcing from the main gaseous and aerosol species is then obtained through radiative transfer calculations and regional variations are discussed. This new simulation environment called the environmental Ground and Air Mode Explorer (eGAME) is then used to explore different policy and technology scenarios and assess their effect on transportation demand, fleet efficiencies and the resulting climate impact. The results obtained with this integrated assessment tool aim to support a scenario-based decision making approach and provide insight into the future of the U.S. transportation system in a climate constrained environment.
272

Atmospheric Chemistry of Polyfluorinated Compounds: Long-lived Greenhouse Gases and Sources of Perfluorinated Acids

Young, Cora Jean Louise 15 September 2011 (has links)
Fluorinated compounds are environmentally persistent and have been demonstrated to bioaccumulate and contribute to climate change. The focus of this work was to better understand the atmospheric chemistry of poly- and per-fluorinated compounds in order to appreciate their impacts on the environment. Several fluorinated compounds exist for which data on climate impacts do not exist. Radiative efficiencies (REs) and atmospheric lifetimes of two new long-lived greenhouse gases (LLGHGs) were determined using smog chamber techniques: perfluoropolyethers and perfluoroalkyl amines. Through this, it was observed that RE was not directly related to the number of carbon-fluorine bonds. A structure-activity relationship was created to allow the determination of RE solely from the chemical structure of the compound. Also, a novel method was developed to detect polyfluorinated LLGHGs in the atmosphere. Using carbotrap, thermal desorption and cryogenic extraction coupled to GC-MS, atmospheric measurements can be made for a number of previously undetected compounds. A perfluoroalkyl amine was detected in the atmosphere using this technique, which is the compound with the highest RE ever detected in the atmosphere. Perfluorocarboxylic acids (PFCAs) are water soluble and non-volatile, suggesting they are not susceptible to long-range transport. A hypothesis was derived to explain the ubiquitous distribution of these compounds involving atmospheric formation of PFCAs from volatile precursors. Using smog chamber techniques with offline analysis, perfluorobutenes and fluorotelomer iodides were shown to yield PFCAs from atmospheric oxidation. Dehydrofluorination of perfluorinated alcohols (PFOHs) is poorly understood in the mechanism of PFCA atmospheric formation. Using density functional techniques, overtone-induced photolysis was shown to lead to dehydrofluorination of PFOHs. In the presence of water, this mechanism could be a sink of PFOHs in the atmosphere. Confirmation of the importance of volatile precursors was derived from examination of snow from High Arctic ice caps. This provided the first empirical evidence of atmospheric deposition. Through the analytes observed, fluxes and temporal trends, it was concluded that atmospheric oxidation of volatile precursors is an important source of PFCAs to the Arctic.
273

Monte Carlo Solution Of A Radiative Heat Transfer Problem In A 3-d Rectangular Enclosure Containing Absorbing, Emitting, And Anisotropically Scattering Medium

Demirkaya, Gokmen 01 December 2003 (has links) (PDF)
In this study, the application of a Monte Carlo method (MCM) for radiative heat transfer in three-dimensional rectangular enclosures was investigated. The study covers the development of the method from simple surface exchange problems to enclosure problems containing absorbing, emitting and isotropically/anisotropically scattering medium. The accuracy of the MCM was first evaluated by applying the method to cubical enclosure problems. The first one of the cubical enclosure problems was prediction of radiative heat flux vector in a cubical enclosure containing purely, isotropically and anisotropically scattering medium with non-symmetric boundary conditions. Then, the prediction of radiative heat flux vector in an enclosure containing absorbing, emitting, isotropically and anisotropically scattering medium with symmetric boundary conditions was evaluated. The predicted solutions were compared with the solutions of method of lines solution (MOL) of discrete ordinates method (DOM). The method was then applied to predict the incident heat fluxes on the freeboard walls of a bubbling fluidized bed combustor, and the solutions were compared with those of MOL of DOM and experimental measurements. Comparisons show that MCM provides accurate and computationally efficient solutions for modelling of radiative heat transfer in 3-D rectangular enclosures containing absorbing, emitting and scattering media with isotropic and anisotropic scattering properties.
274

Investigation of a hybrid quasi-diffusion/Monte Carlo method for solving multigroup criticality problems in slab geometry

Robinson, Bethany R. 22 June 2011 (has links)
A hybrid Quasi-diffusion/Monte Carlo Method for solving multigroup criticality problems in slab geometry was investigated. Analog Monte Carlo was used to calculate functionals (Eddington Factors) that were then used in solution of the quasi-diffusion equations. The hybrid method was shown to accurately and precisely predict the k-eigenvalue and fission source distribution for loosely coupled problems with high dominance ratios and significant spatial gradients. The hybrid method was also shown to be computationally more efficient than analog Monte Carlo. / Graduation date: 2012
275

Light scattering of semitransparent media

Li, Qinghe 31 March 2008 (has links)
Polytetrafluoroethylene (PTFE) is a highly scattering material and has been used as diffuse reflectors. In the present study, the ranges of the scattering coefficient, absorption coefficient, and the asymmetric parameter of the Henyey-Greenstein scattering phase function are assessed for semitransparent PTFE films whose thicknesses range from 0.11 mm to 10 mm. The bidirectional reflectance distribution function (BRDF) and bidirectional transmittance distribution function (BTDF) of these PTFE films were measured using a laser scatterometer at a wavelength of 635 nm, and the directional-hemispherical reflectance and transmittance were obtained by integrating BRDF and BTDF at normal incidence. The scattering coefficient of PTFE is estimated to exceed 1200 (1/cm). On the other hand, the absorption coefficient should be less than 0.01 (1/cm). A Monte Carlo simulation was employed to predict the BRDF and BTDF of PTFE films, and the calculations were compared with measurements at various incidence angles.
276

Spectral modeling of nebular-phase supernovae

Jerkstrand, Anders January 2011 (has links)
Massive stars live fast and die young. They shine furiously for a few million years, during which time they synthesize most of the heavy elements in the universe in their cores. They end by blowing themselves up in a powerful explosion known as a supernova (SN). During this process, the core collapses to a neutron star or a black hole, while the outer layers are expelled with velocities of thousands of kilometers per second. The resulting fireworks often outshine the entire host galaxy for many weeks. The explosion energy is eventually radiated away, but powering of the newborn nebula continues by radioactive isotopes synthesized in the explosion. The ejecta are now quite transparent, and we can see the material produced in the deep interiors of the star. To interpret the observations, detailed spectral modeling is needed. This thesis aims to develop and apply state-of-the-art computational tools for interpreting and modeling SN observations in the nebular phase. This requires calculation of the physical conditions throughout the nebula, including non-thermal processes from the radioactivity, thermal and statistical equilibrium, as well as radiative transport. The inclusion of multiline radiative transfer, which we compute with a Monte Carlo technique, represents one of the major advancements presented in this thesis. On February 23 1987, the first SN observable by the naked eye since 1604 exploded, SN 1987A. Its proximity has allowed unprecedented observations, which in turn have lead to significant advancements in our understanding of SN explosions. As a first application of our model, we analyze the 44Tipowered phase (t & 5 years) of SN 1987A. We find that a magnetic field is present in the nebula, trapping the positrons that provide the energy input, and resulting in strong iron lines in the spectrum. We determine the 44Ti mass to 1.5(+0.5−0.5)*10−4 M⊙. From the near-infrared spectrum at an age of 19 years, we identify strong emission lines from explosively synthesized metals such as silicon, calcium, and iron. We use integral-field spectroscopy to construct three-dimensional maps of the ejecta, showing a morphology suggesting an asymmetric explosion. The model is then applied to the close-by and well-observed Type IIP SN 2004et, analyzing its ultraviolet to mid-infrared evolution. Based on its Mg I] 4571 Å, Na I 5890, 5896 Å, [O I] 6300, 6364 Å, and [Ne II] 12.81 mm nebular emission lines, we determine its progenitor mass to be around 15 M⊙. We confirm that silicate dust, SiO, and CO have formed in the ejecta. Finally, the major optical emission lines in a sample of Type IIP SNe areanalyzed.We find that most spectral regions in Type IIP SNe are dominated by emission from the massive hydrogen envelope, which explains the relatively small variation seen in the sample. We also show that the similar line profiles seen from all elements suggest extensive mixing occurring in most hydrogenrich SNe. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Accepted.
277

A coarse mesh radiation transport method for prismatic block thermal reactors in two dimensions

Connolly, Kevin John 07 July 2011 (has links)
In this paper, the coarse mesh transport method is extended to hexagonal geometry. This stochastic-deterministic hybrid transport method calculates the eigenvalue and explicit pin fission density profile of hexagonal reactor cores. It models the exact detail within complex heterogeneous cores without homogenizing regions or materials, and neither block-level nor core-level asymmetry poses any limitations to the method. It solves eigenvalue problems by first splitting the core into a set of coarse meshes, and then using Monte Carlo methods to create a library of response expansion coefficients, found by expanding the angular current in phase-space distribution using a set of polynomials orthogonal on the angular half-space defined by mesh boundaries. The coarse meshes are coupled by the angular current at their interfaces. A deterministic sweeping procedure is then used to iteratively construct the solution. The method is evaluated using benchmark problems based on a gas-cooled, graphite-moderated high temperature reactor. The method quickly solves problems to any level of detail desired by the user. In this paper, it is used to explicitly calculate the fission density of individual fuel pins and determine the reactivity worth of individual control rods. In every case, results for the core multiplication factor and pin fission density distribution are found within several minutes. Results are highly accurate when compared to direct Monte Carlo reference solutions; errors in the eigenvalue calculations are on the order of 0.02%, and errors in the pin fission density average less than 0.1%.
278

Radiative forcing and forest climate policy /

Thompson, Matthew P. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 70-74). Also available on the World Wide Web.
279

Multilevel acceleration of neutron transport calculations

Marquez Damian, Jose Ignacio. January 2007 (has links)
Thesis (M.S.)--Nuclear and Radiological Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Stacey, Weston M.; Committee Co-Chair: de Oliveira, Cassiano R.E.; Committee Member: Hertel, Nolan; Committee Member: van Rooijen, Wilfred F.G.
280

Application de la méthode des ordonnées discrètes au transfert radiatif dans des géométries bidimensionnelles complexes : couplage rayonnement-convection /

El Kasmi, Amina, January 1999 (has links)
Mémoire (M.Eng.)--Université du Québec à Chicoutimi, 1999. / Document électronique également accessible en format PDF. CaQCU

Page generated in 0.3355 seconds