• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 811
  • 233
  • 225
  • 76
  • 57
  • 31
  • 27
  • 24
  • 20
  • 18
  • 14
  • 8
  • 6
  • 6
  • 5
  • Tagged with
  • 1902
  • 297
  • 260
  • 237
  • 151
  • 145
  • 121
  • 117
  • 113
  • 112
  • 106
  • 94
  • 94
  • 92
  • 90
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Some New Aspects of Radical Trapping Using an Aminoxyl Radical Trap

Grice, I. Darren, n/a January 1993 (has links)
An investigation of the initiation mechanism in the free radical copolymerisation of acrylonitrile and vinyl acetate using the aminoxyl radical trapping technique, employing 1,1 ,3,3-tetramethyl-2,3-dihydro- 1 Hisoindol-2-yloxyl is reported. Based upon the experimental results, the mechanism of initiation is suggested as proceeding via the 'free monomer' mechanism. Additionally, the effect of Lewis acids on the initiation mechanism is reported. A study of the addition of phosphorus-centred radicals to alkenes and phenylacetylene, utilising the aminoxyl radical trapping technique is reported. The results indicate a decreased rate of addition by both diphenylphosphinyl and dimethoxyphosphinyl radicals to cyclic versus acyclic alkenes. In contrast to cyclic alkenes, both these phosphorus-centred radicals add readily to the triple bond of phenylacetylene. The stereochemistry of the addition of diphenyiphosphinyl and dimethoxyphosphinyl radicals and of the aminoxyl trap is discussed. The stereochemistry of the addition of benzoyloxyl radicals to a conformationally rigid alkene, trans-a2-octalin is reported. Attempts to examine the initiation mechanism in the free radical copolymerisation of styrene/maleic anhydride and of styrene/tetracyanoethylene utilising the aminoxyl radical trapping technique are described. Also described are attempts to synthesise some new phosphorus radical initiators.
332

Theoretical Investigations of Radical-Mediated Protein Oxidation

Wood, Geoffrey Paul Farra January 2006 (has links)
Doctor of Philosophy (PhD) / This thesis primarily details the application of high-level ab initio quantum chemistry techniques in order to understand aspects of free-radical mediated protein oxidation. Traditionally, product analysis and electron paramagnetic resonance (EPR) spectroscopy are the primary means for elucidating the chemistry of protein oxidation. However, in experiments involving relatively small proteins reacting with a controlled radical-flux, a vast array of compounds can be produced, which are often difficult to analyse. Quantum chemical techniques on the other hand, can calculate the properties of any particular species directly, without suffering from the problems associated with experiment, such as side-reactions and chain processes. The results presented in this thesis are aimed at elucidating mechanistic details of protein oxidation, which might otherwise be difficult to probe experimentally. Chapter 1 gives an overview of the free-radical hypothesis of disease and ageing. Protein-derived radicals can undergo a variety of reactions, with the particular reaction that occurs depending on numerous aspects. Many types of reactions have been identified through radiolysis experiments of amino acids, and these are detailed in this chapter. In addition, the key reactive species are characterized and their different chemistries explained. Chapter 2 details the theoretical tools used throughout this thesis. Species with unpaired electrons (radicals) present unique problems for quantum chemistry to handle, thus an appropriate choice of theoretical technique is needed. The approach taken in this thesis is to use high-level compound methods, many of which have been directly formulated to give improved results for radical species, to provide benchmark quality results by which other less demanding techniques can be assessed. During the course of this study, it became apparent there was a void in the armoury of tools that could be used for the theoretical chemistry calculations. Chapter 3 details the formulation of a new tool in an attempt to fill this gap. Historically, the formulation of this new procedure came after much of the work in this thesis had been carried out. Thus, for the study of many of the reactions of this thesis the new method has not been used. However, it is most appropriate to place its formulation after summarizing the current status of techniques in common use today. Chapters 4 and 5 detail computations carried out on models of peptides containing backbone carbon- and nitrogen-centered radicals. A number of different theoretical techniques are used in these chapters, ranging from the highly accurate and computationally intensive to the less reliable and less demanding. The highly accurate techniques are used to gauge the accuracy of the other less demanding theoretical techniques so that the latter can be used with confidence in larger systems. Not only is the choice of theoretical technique important but also the judicious choice of model is essential. With this in mind, models are incrementally built until convergence of the particular property of interest is reached. Chapters 6 and 7 detail the calculations of β-scission reactions of alkoxyl radicals, which are a particular class of reaction known to occur on peptide backbones. Alkoxyl radicals are particularly difficult for theory to describe correctly. Therefore, Chapter 6 extensively assesses and then identifies the theoretical methods needed to portray them. Chapter 7 uses the techniques identified in the previous chapter in order to predict how the preference for a particular type of β-scission reaction changes.
333

An experiment with radical pedagogy

McInnis, Shelley, n/a January 1989 (has links)
This thesis is an analysis of some research undertaken with students in a unit on human sexuality. It is a critical account of an experiment with 'radical' pedagogy which deliberately forsakes the pessimistic determinism of social reproduction theory in education and assumes the fundamental optimism of resistance theory, wherein human actors are capable of penetrating oppressive ideology and practice and working towards emancipation and social change. The experiment is an attempt to implement radical pedagogy in a particular classroom, and the body of the thesis consists of a critique of data collected from participants' notes and transcriptions of video and audio-tapes of thirteen, two�hour class sessions. The first chapter of the thesis outlines the nature of a pedagogical style which could be described as counter�hegemonic, non-reproductive, or liberatory, and it specifies the elements of a 'radical' approach to classroom process and content, which is distinguished from a 'traditional' one. Subsequent chapters present a critical analysis of actual classroom 'content' and 'process', which is based on a study of reconstructed sessional data, and the final chapter discusses the factors which limited the 'success' of the experiment, and attempts to draw some conclusions about the liberatory possibilities of radical pedagogy.
334

Surface grafting of polymers via living radical polymerization techniques; polymeric supports for combinatorial chemistry

Zwaneveld, Nikolas Anton Amadeus, Chemical Engineering & Industrial Chemistry, UNSW January 2006 (has links)
The use of living radical polymerization methods has shown significant potential to control grafting of polymers from inert polymeric substrates. The objective of this thesis is to create advanced substrates for use in combinatorial chemistry applications through the use of g-radiation as a radical source, and the use of RAFT, ATRP and RATRP living radical techniques to control grafting polymerization. The substrates grafted were polypropylene SynPhase lanterns from Mimotopes and are intended to be used as supports for combinatorial chemistry. ATRP was used to graft polymers to SynPhase lanterns using a technique where the lantern was functionalized by exposing the lanterns to gamma-radiation from a 60Co radiation source in the presence of carbon tetra-bromide, producing short chain polystyrene tethered bromine atoms, and also with CBr4 directly functionalizing the surface. Styrene was then grafted off these lanterns using ATRP. MMA was graft to the surface of SynPhase lanterns, using g-radiation initiated RATRP at room temperature. It was found that the addition of the thermal initiator, AIBN, successfully increased the concentration of radicals to a level where we could achieve proper control of the polymerization. RAFT was used to successfully control the grafting of styrene, acrylic acid and N,N???-dimethylacrylamide to polypropylene SynPhase Lanterns via a -initiated RAFT agent mediated free radical polymerization process using cumyl phenyldithioacetate and cumyl dithiobenzoate RAFT agents. Amphiphilic brush copolymers were produced with a novel combined RAFT and ATRP system. Polystyrene-co-poly(vinylbenzyl chloride) created using gamma-radiation and controlled with the RAFT agent PEPDA was used as a backbone. The VBC moieties were then used as initiator sites for the ATRP grafting of t-BA to give a P(t-BA) brush that was then hydrolyzed to produce a PAA brush polymer. FMOC loading tests were conducted on all these lanterns to assess their effectiveness as combinatorial chemistry supports. It was found that the loading could be controlled by adjusting the graft ratio of the lanterns and had a comparable loading to those commercially produced by Mimotopes.
335

Surface grafting of polymers via living radical polymerization techniques; polymeric supports for combinatorial chemistry

Zwaneveld, Nikolas Anton Amadeus, Chemical Engineering & Industrial Chemistry, UNSW January 2006 (has links)
The use of living radical polymerization methods has shown significant potential to control grafting of polymers from inert polymeric substrates. The objective of this thesis is to create advanced substrates for use in combinatorial chemistry applications through the use of g-radiation as a radical source, and the use of RAFT, ATRP and RATRP living radical techniques to control grafting polymerization. The substrates grafted were polypropylene SynPhase lanterns from Mimotopes and are intended to be used as supports for combinatorial chemistry. ATRP was used to graft polymers to SynPhase lanterns using a technique where the lantern was functionalized by exposing the lanterns to gamma-radiation from a 60Co radiation source in the presence of carbon tetra-bromide, producing short chain polystyrene tethered bromine atoms, and also with CBr4 directly functionalizing the surface. Styrene was then grafted off these lanterns using ATRP. MMA was graft to the surface of SynPhase lanterns, using g-radiation initiated RATRP at room temperature. It was found that the addition of the thermal initiator, AIBN, successfully increased the concentration of radicals to a level where we could achieve proper control of the polymerization. RAFT was used to successfully control the grafting of styrene, acrylic acid and N,N???-dimethylacrylamide to polypropylene SynPhase Lanterns via a -initiated RAFT agent mediated free radical polymerization process using cumyl phenyldithioacetate and cumyl dithiobenzoate RAFT agents. Amphiphilic brush copolymers were produced with a novel combined RAFT and ATRP system. Polystyrene-co-poly(vinylbenzyl chloride) created using gamma-radiation and controlled with the RAFT agent PEPDA was used as a backbone. The VBC moieties were then used as initiator sites for the ATRP grafting of t-BA to give a P(t-BA) brush that was then hydrolyzed to produce a PAA brush polymer. FMOC loading tests were conducted on all these lanterns to assess their effectiveness as combinatorial chemistry supports. It was found that the loading could be controlled by adjusting the graft ratio of the lanterns and had a comparable loading to those commercially produced by Mimotopes.
336

Extensions algébriques : cas général et cas des radicaux

Hakima, Najid-Zejli 24 June 1985 (has links) (PDF)
On considère le problème du calcul dans des extensions de Q par des nombres algébriques. Il s'agit (par diverses approches) de savoir comment l'arithmétique exacte peut être envisagée dans ces extensions. On présente l'approche classique basée sur l'élément primitif, on montre qu'elle est très coûteuse et que les résultats obtenus sont inutilisables. On voit une autre approche basée sur des factorisations dans les extensions, on montre qu'elle est meilleure que la première, cependant l'algorithme de factorisation est assez coûteuse. On aborde le cas particulier où les nombres algébriques sont loin d'être triviales mais qu'en se plaçant sur un corps de base Ko engendré sur Q par ζo = exp iπ/4 on peut surmonter toutes les difficultés. On présente l'algorithme et des exemples dans le cas de un ou de deux radicaux. La généralisation à plusieurs radicaux ne semble pas poser des difficultés supplémentaires
337

Surface Functionalization of Monodisperse Magnetic Nanoparticles

Lattuada, Marco, Hatton, T. Alan 01 1900 (has links)
We present a systematic methodology to functionalize magnetic nanoparticles through surface-initiated atom-transfer radical polymerization (ATRP). The magnetite nanoparticles are prepared according to the method proposed by Sun et al. (2004), which leads to a monodisperse population of ~ 6 nm particles stabilized by oleic acid. The functionalization of the nanoparticles has been performed by transforming particles into macro-initiators for the ATRP, and to achieve this two different routes have been explored. The first one is the ligand-exchange method, which consists of replacing some oleic acid molecules adsorbed on the particle surface with molecules that act as an initiator for ATRP. The second method consists in using the addition reaction of bromine to the oleic acid double bond, which turns the oleic acid itself into an initiator for the ATRP. We have then grown polymer brushes of a variety of acrylic polymers on the particles, including polyisopropylacrylamide and polyacrylic acid. The nanoparticles so functionalized are water soluble and show responsive behavior: either temperature responsive behavior when polyisopropylacrylamide is grown from the surface or PH responsive in the case of polyacrylic acid. This methodology has potential applications in the control of clustering of magnetic nanoparticles. / Singapore-MIT Alliance (SMA)
338

On the importance of radical formation in ozone bleaching

Ragnar, Martin January 2000 (has links)
No description available.
339

Roaming in the Dark: Deciphering the Mystery of NO3 --> NO + O2 Photolysis

Grubb, Michael Patrick 2012 May 1900 (has links)
The focus of this dissertation is to decipher the previously unknown reaction dynamics of NO3 photodissociation. Although the NO + O2 products are known to catalyze atmospheric ozone destruction, the mechanism by which these products are formed has remained a mystery, and no energetically accessible transition state has ever been calculated. Using velocity map ion imaging experiments to carefully study the stereochemistry of the product fragments combined with theoretical calculations performed by Drs. Xiao, Maeda, and Morokuma at Kyoto University, we have determined that the reaction proceeds exclusively via the unusual "roaming mechanism," with no evidence of a competing traditional transition state pathway. Within, the significance of this discovery is discussed in regards to both the NO3 system and roaming dynamics in general, for which this system has provided new insight.
340

The Impact of Radical Innovation on Consumer Behaviour : A case study of iPhone

Ungsusing, Antika, Pinyotrakool, Phromporn January 2009 (has links)
No description available.

Page generated in 0.0537 seconds