1 |
Ionisation par faisceau d'électrons de solutions aqueuses de benzènesulfonate et naphthalènesulfonate et sous-produits / Ionization by electron beam of aqueous solutions of naphthalenesulfonate, benzenesulfonate and by-productsAlkhuraiji, Turki 17 April 2013 (has links)
Ce sujet entre dans le cadre de l'étude d'un procédé d'oxydation avancé innovant dans le domaine de la dépollution des eaux, à savoir l'ionisation par faisceau d'électrons. Le radical hydroxyle (•OH) et l'électron hydraté (e−aq) sont les deux espèces majoritaires issues de l'ionisation de solutions aqueuses par un faisceau d'électrons d'intense énergie. Il a été démontré que la génération des radicaux supplémentaires tels que le radical sulfate (SO4•−) et le radical hydroxyle par les réactions radicalaires entre l'ion persulfate, le peroxyde d'hydrogène et l'électron hydraté respectivement, améliore l'efficacité de ce procédé pour la dégradation de polluants organiques en solution aqueuse. Dans le présent travail, la dégradation et la minéralisation de benzènesulfonate et naphthalènesulfonate de sodium, et d'acide gallique ont été obtenues par irradiation par faisceau d'électrons seul et couplé avec un oxydant (S2O8−−, H2O2). En absence d'oxydant une dose absorbée de 1,5 kGy a été suffisante pour l'élimination totale de ces composés. La présence d'oxydant permet généralement de réduire les doses d'irradiation nécessaires. Par ailleurs, l'augmentation de la concentration en oxydant ou de la dose appliquée a un effet bénéfique vis-à-vis de l'élimination du carbone organique. Cependant, le couplage S2O8−−/faisceau d'électrons est plus adapté que le couplage H2O2/faisceau d'électrons même en présence de constituants inorganiques. Les résultats obtenus soulignent l'importance du rôle du dioxygène dissous lors de l'étape de la minéralisation en vue de favoriser la formation des radicaux organiques (ROO•). Pour chaque une des molécules étudiées, des sous-produits d'oxydation... / This research belongs to the study of the ionization of aqueous solutions by electron beam (E.B.) as an advanced oxidation process for water treatment. The hydroxyl radical (•OH) and hydrated electron(eaq¯) are the two major active species produced from the ionization of aqueous solutions by high energy electron beam. It has been shown that the generation of additional radicals such as the sulphate radical (SO4•¯) and hydroxyl radical from the reaction of persulfate ion (S2O8¯) or hydrogen peroxide (H2O2) with the hydrated electron, improved the efficiency of this process towards the degradation and mineralization of organic pollutants in aquaeous solution. In the présent work, the degradation and mineralization of naphthalenesulfonate, benzenesulfonate and gallic acid were studied by electron beam irradiation alone and coupled with oxidants (S2O8¯, H2O2).In the absence of oxidant, an absorbed dose of 1,5 kGy leads to total elimnation of these pollutants. The presence of added oxidants usually reduces the radiation dose required. In addition, increasing oxidant concentration or applied dose had a beneficial effect towards the organic carbon removal. It was found that coupling E.B./S2O8¯ has more suitable than E.B./ H2O2 even in the presence of inorganic constituents. The results also highlighted the importance of dissolved oxygen in the system when mineralization is aimed. For each of the molecules studied, oxidation by-products resulting from hydroxylation and aromatic ring opening were identified.
|
2 |
Application of Fe(III)-EDDS complex in advanced oxidation processes : 4-ter-butylphenol degradation / Utilisation du complexe Fe(III)-EDDS dans des procédés d’oxydation avancée : dégradation du 4-tert-butylphénolWu, Yanlin 16 May 2014 (has links)
Dans cette étude, un nouveau complexe de fer est utilisé dans des processus d’oxydation avancée pour la dégradation de polluants organiques présents dans l’eau. Le fer ferrique (Fe(III)) et l’acide éthylène diamine-N,N’-disuccinique (EDDS) forment un complexe Fe(III)-EDDS dont la structure a été mise en évidence durant ce travail. Les propriétés photochimiques du complexe ont ensuite été évaluées en fonction de différents paramètres physico-chimiques dont le pH qui est apparu comme un paramètre clé pour l’efficacité des processus testés. Ensuite nous avons donc travaillé sur l’utilisation de ce complexe dans les processus de Fenton modifié, photo-Fenton et comme activateur des persulfates (S2O82-). Nos expériences ont été réalisées en présence du 4-tert-butylphénol (4-t-BP) qui est connu pour être un perturbateur endocrinien. Nous avons ensuite mis en évidence les conditions optimales du traitement pour la dégradation du 4-t-BP. Il est apparu que le pH joue un rôle très important et qu’en présence de ce complexe de fer, l’efficacité est plus importante pour des pH neutre ou légèrement basique. L’identification des radicaux oxydants responsables de la dégradation du polluant a également été réalisée. Dans ce cadre nous avons montré que le radical sulfate joue un rôle plus important que le radical hydroxyle lors du processus d’activation des persulfates. / Advanced Oxidation Processes (AOPs) have been proved to be successfully applied in the treatment of sewage. It can decolorize the wastewater, reduce the toxicity of pollutants, convert the pollutants to be a biodegradable by-product and achieve the completed mineralization of the organic pollutants. The Fenton technologies which are performed by iron-activated hydrogen peroxide (H2O2) to produce hydroxyl radical (HO•) has been widely investigated in the past few decades. Recently, Sulfate radical (SO4•-) which was produced by the activation of persulfate (S2O82-) is applied to the degradation of organic pollutants in water and soil. It is a new technology recently developed. It is also believed to be one of the most promising advanced oxidation technologies.In this study, a new iron complex is introduced to the traditional Fenton reaction. The ferric iron (Fe(III)) and Ethylene diamine-N,N′-disuccinic acid (EDDS) formed the complex named Fe(III)-EDDS. It can overcome the main disadvantage of traditional Fenton technology, which is the fact that traditional Fenton technology can only perform high efficiency in acidic condition. Simultaneously, EDDS is biodegradable and it is one of the best environment-friendly complexing agents. On the other hand, the transition metal is able to activate S2O82- to generate SO4•-. Therefore, Fe(III)-EDDS will also be applied to activate S2O82- in the present study. 4-tert-Butylphenol (4-t-BP) has been chosen as a target pollutant in this study. It is widely used as a chemical raw material and is classified as endocrine disrupting chemicals due to the estrogenic effects. The 4-t-BP degradation rate (R4-t-BP) is used to indicate the efficiency of the advanced oxidation processes which are based on Fe(III)-EDDS utilization. The main contents and conclusions of this research are shown as follows:In the first part, the chemical structure and properties of Fe(III)-EDDS and the 4-t-BP degradation efficiency in UV/Fe(III)-EDDS system were studied. The results showed that Fe(III)-EDDS was a stable complex which was formed by the Fe(III) and EDDS with the molar ratio 1:1. From the photoredox process of Fe(III)-EDDS, the formation of hydroxyl radical was confirmed including that HO• is the main species responsible for the degradation of 4-t-BP in aqueous solution. Ferrous ion (Fe(II)) was also formed during the reaction. With the increasing Fe(III)-EDDS concentration, 4-t-BP degradation rate increased but is inhibited when the Fe(III)-EDDS concentration was too high. Indeed, Fe(III)-EDDS is the scavenger of HO•. pH value had a significant effect on the degradation efficiency of 4-t-BP that was enhanced under neutral or alkaline conditions. On the one hand, Fe(III)-EDDS presented in the FeL-, Fe(OH)L2-, Fe(OH)2L3-, Fe(OH)4- four different forms under different pH conditions and they had different sensitivity to the UV light. On the other hand, pH value affected the cycle between Fe(III) and Fe(II ). The formation of hydroperoxy radicals (HO2•) and superoxide radical anions (O2•-) (pka = 4.88) as a function of pH was also one of the reasons. It was observed that O2 was an important parameter affecting the efficiency of this process. This effect of O2 is mainly due to its important role during the oxidation of the first radical formed on the pollutant. (...)
|
3 |
Élimination induite par le radical sulfate de micro polluants organiques en phase aqueuse-Influence des constituants naturels de l'eau / Sulfate-radical Induced Removal of Organic Micro-pollutants from Aqueous Solution- Influence of Natural Water ConstituentsZhou, Lei 27 September 2017 (has links)
Les processus d'oxydation avancés à base du radical sulfate (SO4•- -) ont prouvé leur efficacité pour l'élimination de nombreux contaminants. Dans ce travail de thèse, nous avons étudié les processus d'oxydation et de dégradation par le radical sulfate activé à partir du persulfate (PS) pour les molécules suivantes : le diatrizoate, molécule utilisée comme produit de contraste radiologique iodé (DTZ), le salbutamol (SAL) et la terbutaline (TBL), agonistes des récepteurs ß2-adrénergiques. En outre, la réactivité de SO4•- avec la matière organique naturelle (NOM) a également été déterminée. Plus précisément, pour déterminer la réactivité de SO4•- avec NOM, une technique de photolyse laser couplée à la spectroscopie (LFP) a été appliquée pour étudier l'évolution de SO4 • ainsi que la formation d'espèces transitoires à partir de la matière organique. Des constantes de vitesses comprises entre 1530 et 3500 s-1 mgC-1 L ont été obtenues par analyse numérique des équations différentielles et des valeurs moyennes de coefficient d'absorption molaires comprises entre 400 et 800 M-1 cm-1 ont été déterminées pour les espèces transitoires générées de la matière organique.Dans le processus de décomposition de DTZ par PS activé par UV, les principales voies d'oxydation sont la dé-iodination-hydroxylation, la dé-carboxylation-hydroxylation et le clivage de la chaîne latérale. Les résultats ont également indiqué que la vitesse de dégradation du DTZ augmentait avec l'augmentation de la concentration en PS. La présence de NOM a inhibé la dégradation de DTZ, tandis que le bicarbonate l'a amélioré. Pour les ions chlorure un effet négatif a été observé pour des concentrations supérieures à 500 mM.Pour la dégradation du SAL et du TBL, il a été montré que les radicaux phénoxy jouaient un rôle majeur en début de réaction. Par ailleurs, le chlorure n'a pas eu d'effet tangible sur l'efficacité d'oxydation de la SAL et du TBL, tandis que les ions bromures, bicarbonates et le NOM présentaient des effets inhibiteurs / Sulfate radical (SO4•-) based advanced oxidation processes (AOPs) has been proved to be effective for the removal of many contaminants. In this thesis, we investigated the oxidation processes of iodinated X-ray contrast media diatrizoate (DTZ), ß2-adrenoceptor agonists salbutamol (SAL) and terbutaline (TBL) by reaction with SO4•- generated from the activation of persulfate (PS); in addition, the reactivity of SO4•- with natural organic matter (NOM) was also estimated.Specifically, to determine the reactivity of SO4•- with NOM, laser flash photolysis (LFP) technique was applied to monitor the SO4•- decay and the formation of the transients from organic matters. Reaction rate constants comprised between 1530 and 3500 s-1 mgC-1 L were obtained by numerical analysis of differential equations and the weighted average of the extinction coefficient of the generated organic matters radicals between 400 and 800 M-1 cm-1.In the decomposition process of DTZ by UV-activated PS, major oxidation pathways include deiodination-hydroxylation, decarboxylation- hydroxylation and side chain cleavage. Results also indicated that DTZ degradation rate increased with increasing PS concentration. The presence of NOM inhibited DTZ removal rate, while, bicarbonate enhanced it, and chloride ions induced a negative effect above 500 mM. For the degradation of SAL and TBL, phenoxyl radicals were proven to play a very important role from the initial step. Chloride exhibited no effect on the oxidation efficiencies of SAL and TBL, while bromide, bicarbonate and NOM all showed inhibitory effects
|
Page generated in 0.0593 seconds