• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Neutron Emission Spectroscopy Instrumentation for Deuterium and Deuterium-Tritium Fusion Plasmas at JET

Giacomelli, Luca January 2007 (has links)
<p>The study of high power fusion plasmas at the JET tokamak has been further enhanced through the development of instrumentation for neutron emission spectroscopy (NES) measurements. This has involved the upgrade of the magnetic proton recoil (MPR) spectrometer used for deuterium-tritium plasmas earlier so that the MPRu can now be also employed for deuterium (D) plasmas. A neutron time-of-flight (TOF) spectrometer designed for optimized rate (TOFOR) has been constructed and put into operation. The MPRu and TOFOR spectrometers were carried out as part of the JET enhanced performance program and represent the most advanced instrumentation for NES diagnosis of both D and DT tokamak plasmas setting a central platform for R&D direct to the next step in fusion research to be carried out with ITER.</p><p>The MPRu work presented in this thesis concerns the development of a new focal plane detector based on the phoswich scintillator technique. The main objective of this sub-project was to increase the signal-to-background ratio to permit measurement of the 2.5-MeV neutron emission from d+d-->3He+n reactions and, hence, allow NES diagnosis of D plasmas. The objective was achieved as demonstrated in preliminary measurements at JET. </p><p>The development of TOFOR from concept to construction is presented in the thesis including, in particular, the commissioning of the instrument at JET. The objective of the TOFOR project was to achieve the same high performance in the NES diagnosis of D plasmas as had earlier been demonstrated by the MPR for DT plasmas. TOFOR has been used in the first plasma physics experiments reported in this thesis. These demonstrate that the performance objectives have been achieved as tested, in particular, in the observation of auxiliary heating effects on velocity distribution of the deuterium population.</p>
2

Development of Neutron Emission Spectroscopy Instrumentation for Deuterium and Deuterium-Tritium Fusion Plasmas at JET

Giacomelli, Luca January 2007 (has links)
The study of high power fusion plasmas at the JET tokamak has been further enhanced through the development of instrumentation for neutron emission spectroscopy (NES) measurements. This has involved the upgrade of the magnetic proton recoil (MPR) spectrometer used for deuterium-tritium plasmas earlier so that the MPRu can now be also employed for deuterium (D) plasmas. A neutron time-of-flight (TOF) spectrometer designed for optimized rate (TOFOR) has been constructed and put into operation. The MPRu and TOFOR spectrometers were carried out as part of the JET enhanced performance program and represent the most advanced instrumentation for NES diagnosis of both D and DT tokamak plasmas setting a central platform for R&amp;D direct to the next step in fusion research to be carried out with ITER. The MPRu work presented in this thesis concerns the development of a new focal plane detector based on the phoswich scintillator technique. The main objective of this sub-project was to increase the signal-to-background ratio to permit measurement of the 2.5-MeV neutron emission from d+d--&gt;3He+n reactions and, hence, allow NES diagnosis of D plasmas. The objective was achieved as demonstrated in preliminary measurements at JET. The development of TOFOR from concept to construction is presented in the thesis including, in particular, the commissioning of the instrument at JET. The objective of the TOFOR project was to achieve the same high performance in the NES diagnosis of D plasmas as had earlier been demonstrated by the MPR for DT plasmas. TOFOR has been used in the first plasma physics experiments reported in this thesis. These demonstrate that the performance objectives have been achieved as tested, in particular, in the observation of auxiliary heating effects on velocity distribution of the deuterium population.
3

Effects of adding graphene-based nano materials on cure time and bond strength of adhesives

Henfield, Bradia T. 08 August 2023 (has links) (PDF)
This research took place in 3 stages. In the first stage, lignin graphene (LG) was synthesized using a catalytic thermal conversion process. In stage 2, the time and temperature correlations for polyvinyl acetate (PVAc) and phenol resorcinol formaldehyde (PRF) adhesives were found and PRF showed stronger correlation when doped with carbon nanomaterials. Stage 3 evaluated the effect of the nanomaterials on radio frequency (RF) heating time and adhesive strength. It was found that all versions of the PRF adhesive resulted in higher shear strength values when cured in room temperature for 24 hours or in an oven at 170 °F for 30 minutes. The combination of PRF + 0.5 % LG and 120 s RF heating resulted in significantly higher block shear strengths when compared to the other RF heating durations. Pine lumber was selected as it is the single most important commercial/structural species in North America, by volume. A substantial portion of pine is directed to glue-laminated timber and cross-laminated timber. Both industries use or can use RF curing and as such both may benefit from improvements developed herein.
4

Modeling of Radio Frequency Heating in JET

Tegkelidis, Christos, Lindström, Erik January 2020 (has links)
This study examines the efficiency of ion cyclotronresonance heating in multi-ion plasmas in JET (Joint EuropeanTorus), using deuterium and tritium as fuel along with smallconcentrations of a third ion species. In particular, two ionminority scenarios, hydrogen and helium, as well as a 3-ionscenario using beryllium were constructed. The scenarios weresimulated with FEMIC and the obtained data was then compiledand analyzed through a number of metrics.The highest total power absorption was 8.56 W and wasachieved by the 4% hydrogen scenario. However, 8% hydrogenattained the highest power partition by the minority ion species.The optimal beryllium concentration regarding absorbed powerwas 0.1% in 36.2% deuterium and 63.4% tritium, with a totalcoupled power of 6.94 W. The highest power partition byberyllium was noted for the 0.25% case in a 36% deuteriumand 63% tritium plasma. / Denna studie undersöker effektiviteten av joncyklotronresonansuppvärmning av JETs (Joint European Torus) plasma, med deuterium och tritium som bränsle, samt små koncentrationer av ett tredje ämne. Mer specifikt undersöks två scenarier med minoritetsjoner, helium och väte, och ett 3-jonscenario med beryllium. För att undersöka dessa olika konstellationer körs simuleringar i FEMIC. Datan som fås från simuleringarna sammanställs och analyseras i enlighet med olika mått. Den högsta totala absorptionen av energi var 8.56 W och fas av 4% väteminoritet. 8% väte ger den högsta energipartitionen för det tredje jonslaget. Beryllium absorberade som mest 6.94 W, detta med 0.1% beryllium, 36.2% deuterium och 63.4% tritium. Den högsta energipartitionen för beryllium uppnåddes med 0.25% beryllium, 36% deuterium och 63% tritium. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
5

Effect of pretreatment on the breakdown of lignocellulosic matrix in barley straw as feedstock for biofuel production

2014 October 1900 (has links)
Lignocellulosic biomass is composed of cellulose, hemicellulose, lignin and extraneous compounds (waxes, fats, gums, starches, alkaloids, resins, tannins, essential oils, silica, carbonates, oxalates, etc). The sugars within the complex carbohydrates (cellulose and hemicellulose) can be accessed for cellulosic bioethanol production through ethanologenic microorganisms. However, the composite nature of lignocellulosic biomass, particularly the lignin portion, presents resistance and recalcitrance to biological and chemical degradation during enzymatic hydrolysis/saccharification and the subsequent fermentation process. This leads to a very low conversion rate, which makes the process uneconomically feasible. Thus, biomass structure requires initial breakdown of the lignocellulosic matrix. In this study, two types of biomass pretreatment were applied on barley straw grind: radio-frequency (RF)-based dielectric heating technique using alkaline (NaOH) solution as a catalyst and steam explosion pretreatment at low severity factor. The pretreatment was applied on barley straw which was ground in hammer mill with a screen size of 1.6 mm, so as to enhance its accessibility and digestibility by enzymatic reaction during hydrolysis. Three levels of temperature (70, 80, and 90oC), five levels of ratio of biomass to 1% NaOH solution (1:4, 1:5, 1:6, 1:7, & 1:8), 1 h soaking time, and 20 min residence time were used for the radio frequency pretreatment. The following process and material variables were used for the steam explosion pretreatment: temperature (140-180oC), retention time (5-10 min), and 8-50% moisture content (w.b). The effect of both pretreatments was assessed through chemical composition analysis and densification of the pretreated and non-pretreated biomass samples. Results of this investigation show that lignocellulosic biomass absorbed more NaOH than water, because of the hydrophobic nature of lignin, which acts as an external crosslink binder on the biomass matrix and shields the hydrophilic structural carbohydrates (cellulose and hemicellulose). It was observed in the RF pretreatment that the use of NaOH solution and the ratio of biomass to NaOH solution played a major role, while temperature played a lesser role in the breakdown of the lignified matrix, as well as in the production of pellets with good physical quality. The heat provided by the RF is required to assist the alkaline solution in the deconstruction and disaggregation of lignocellulosic biomass matrix. The disruption and deconstruction of the lignified matrix is also associated with the dipole interaction, flip flop rotation, and friction generated between the electromagnetic charges from the RF and the ions and molecules from the NaOH solution and the biomass. The preserved cellulose from the raw sample (non-treated) was higher than that from the RF alkaline pretreated samples because of the initial degradation of the sugars during the pretreatment process. The same observation applies to hemicellulose. This implies that there is a trade-off between the breakdown of the biomass matrix/creating pores in the lignin and enhancing the accessibility and digestibility of the cellulose and hemicellulose. The use of dilute NaOH solution in biomass pretreatment showed that the higher the NaOH concentration, the lower was the acid insoluble lignin and the higher was the solubilized lignin moieties. The ratio of 1:6 at the four temperatures studied was determined to be the optimal. Based on the obtained data, it is predicted that this pretreatment will decrease the required amount and cost of enzymes by up to 64% compared to using non-treated biomass. However, the use of NaOH led to an increase in the ash content of biomass. The ash content increased with the decreasing ratio of biomass to NaOH solution. This problem of increased ash content can be addressed by washing the pretreated samples. RF assisted-alkaline pretreatment technique represents an easy to set-up and potentially affordable route for the bio-fuel industry, but this requires further energy analysis and economic validation, so as to investigate the significant high energy consumption during the RF-assisted alkaline pretreatment heating process. Data showed that in the steam explosion (SE) pretreatment, considerable thermal degradation of the energy potentials (cellulose and hemicellulose) with increasing acid soluble and insoluble lignin content occurred. The high degradation of the hemicellulose can be accounted for by its amorphous nature which is easily disrupted by external influences unlike the well-arranged crystalline cellulose. It is predicted that this pretreatment will decrease the required amount and cost of enzymes by up to 33% compared to using non-treated biomass.The carbon content of the solid SE product increased at higher temperature and longer residence time, while the hydrogen and oxygen content decreased. The RF alkaline and SE treatment combinations that resulted to optimum yield of cellulose and hemicellulose were selected and then enzymatically digested with a combined mixture of cellulase and β-glucosidase enzymes at 50oC for 96 h on a shaking incubator at 250 rev/min. The glucose in the hydrolyzed samples was subsequently quantified. The results obtained confirmed the effectiveness of the pretreatment processes. The average available percentage glucose yield that was released during the enzymatic hydrolysis for bioethanol production ranged from 78-96% for RF-alkaline pretreated and 30-50% for the SE pretreated barley straw depending on the treatment combination. While the non-treated sample has available average percentage glucose yield of just below 12%. The effects of both pretreatment methods (RF and SE) were further evaluated by pelletizing the pretreated and non-pretreated barley straw samples in a single pelleting unit. The physical characteristics (pellet density, tensile strength, durability rating, and dimensional stability) of the pellets were determined. The lower was the biomass:NaOH solution ratio, the better was the quality of the produced pellets. Washing of the RF-alkaline pretreated samples resulted in pellets with low quality. A biomass:NaOH solution ratio of 1:8 at the three levels of temperature (70, 80, and 90oC) studied are the RF optimum pretreatment conditions. The higher heating value (HHV) and the physical characteristics of the produced pellets increased with increasing temperature and residence time. The steam exploded samples pretreated at higher temperatures (180ºC) and retention time of 10 min resulted into pellets with good physical qualities. Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) was further applied on the RF alkaline and SE samples in light of the need for rapid and easy quantification of biomass chemical components (cellulose, hemicellulose, and lignin). The results obtained show that the FTIR-PAS spectra can be rapidly used for the analysis and identification of the chemical composition of biofuel feedstock. Predictive models were developed for each of the biomass components in estimating their respective percentage chemical compositions.

Page generated in 0.1229 seconds