Spelling suggestions: "subject:"radiocomunicación"" "subject:"radiocomunicacions""
1 |
Self-optimization of Radio Resources on IEEE 802.11 NetworksGarcía Villegas, Eduardo 18 February 2010 (has links)
Les xarxes d'àrea local sense fils (WLANs), principalment les basades en les diverses versions de les normes IEEE 802.11, i més concretament, aquelles operant en mode infraestructura (ús de punts d'accés o APs), són avui dia les tecnologies més populars per a l'accés ràdio de banda ampla a xarxes IP, ja sigui per a estendre petites xarxes LAN domèstiques (SOHO), o per a proporcionar accés d'Internet en espais públics. A més, amb l'arribada de productes amb el certificat Wi-Fi, els diferents fabricants de dispositius WLAN proporcionen un alt nivell d'interoperabilitat.No obstant això, la creixent densitat de punts d'accés WLAN ha començat a revelar els efectes negatius i les deficiències de les normes IEEE 802.11 inicials. Un dels factors clau del seu èxit, l'ús de la bandes de freqüència lliures (bandes ISM), és al mateix temps un dels seus grans inconvenients. Aquestes freqüències són de lliure accés al públic en general, i es defineixen dins d'una petita porció de l'espectre. En conseqüència, són generalment compartides entre diversos usuaris, dispositius de tecnologies diferents, etc.. A més, el control d'accés al medi definit per l'IEEE 802.11 (CSMA, o "escoltar abans de parlar") requereix una atenció especial a tots els problemes sorgits al voltant de les interferències.En aquest escenari, les xarxes WLAN IEEE no estan en condicions d'arribar a explotar tot el seu potencial. Malgrat aquest fet, unes polítiques intel·ligents sobre la gestió dels recursos ràdio (RRM) poden ajudar a reduir al mínim els efectes perjudicials de les interferències i d'una distribució desigual de la càrrega oferta. En aquesta tesi, es demostra que els mecanismes de RRM eficients són capaços de millorar notablement el rendiment d'una WLAN basada en l'IEEE 802.11.Aquesta tesi estudia la forma d'entendre els problemes de rendiment que són endèmics en les WLANs IEEE 802.11, així com les formes de minimitzar aquests efectes negatius per mitjà de la gestió de recursos ràdio. De fet, aquests problemes no són nous i han estat àmpliament estudiats des de l'aparició de xarxes de comunicacions mòbils, però les característiques particulars de les xarxes WLAN 802,11 requereixen nous enfocaments.Els mecanismes RRM en l'àmbit de les xarxes WLAN IEEE 802.11 són bàsicament destinats a reduir el grau de contenció i la interferència. Aquesta reducció es tradueix en una millor qualitat d'experiència (QoE), d'acord amb la percepció dels usuaris. Amb aquesta finalitat, RRM ha de proporcionar mecanismes eficients d'assignació de canals, algoritmes de selecció de modulació, control de potència i repartiment de càrrega. Atesa la naturalesa dinàmica de la propagació ràdio, i a causa de la mobilitat dels usuaris, els paràmetres que defineixen l'entorn sense fils varien amb el temps. Llavors, per tal de mantenir el rendiment en nivells acceptables, s'han de trobar mecanismes RRM que permetin una reconfiguració automàtica i dinàmica de la xarxa en resposta als canvis en el medi. En resum, podem construir el nostre escenari d'interès a partir de dispositius Wi-Fi intel·ligents capaços de cooperar, ja sigui de forma centralitzada o distribuïda, per tal de fer un millor ús dels minsos recursos ràdio.La nostra contribució als mecanismes RRM en xarxes WLAN s'inicia amb l'estudi i la caracterització de la interferència en l'àmbit particular de les xarxes IEEE 802.11. A continuació, desenvolupem un model de capacitat per a grans xarxes WLAN multi cel·la que té en compte tant l'efecte de la càrrega de la xarxa, com el de les interferències entre cel·les. El model també inclou l'efecte de l'adaptació automàtica de modulació que porten a terme molts dispositius. Aquestes estimacions de la capacitat són útils per a avaluar els beneficis d'un mecanisme RRM. Per exemple, aquestes estimacions són la base sobre la qual desenvolupem una innovadora solució per a la gestió de freqüències. Aquest mecanisme d'assignació de freqüències fa ús de tot l'espectre disponible (tant si es tracta de canals ISM solapats o no), ja que té en compte els efectes dels dos tipus d'interferència que trobem en xarxes IEEE 802.11: co-canal i per canal adjacent. Per tal de fer front a una distribució desigual de la càrrega, fet que es dóna típicament en els anomenats hotspots, es proposen dos mecanismes de repartiment de càrrega (un cop definit el concepte de càrrega): un enfocament distribuït gestionat per les estacions client, i un mecanisme de "cell breathing".Tots aquests mecanismes han de ser integrats en una arquitectura de gestió aglutinadora. En aquest sentit, s'han desenvolupat dues arquitectures de RRM: una arquitectura centralitzada, com a part del projecte UAMN, i un sistema distribuït. / WLANs, primarily the various versions of IEEE 802.11 standards, and more precisely, those operating in infrastructure mode, are nowadays the most popular technologies for providing broadband radio access to IP networks, whether to extend Small Office/Home Office (SOHO) network LANs or to provide Internet access in public places. Moreover, with the advent of Wi-Fi certified products, different competitive brands of WLAN devices are interoperable at a basic level of service.However, the increasing density of WLAN access points has started to reveal the negative effects and shortcomings of the original IEEE 802.11 standards. One of its key success factors, the use of unlicensed Industrial Scientific Medical (ISM) frequency bands, is at the same time one of its major drawbacks. These frequencies are freely available to the general public. On the other hand, such frequencies are defined within a small portion of the spectrum and are usually shared among several users. Besides, the medium access defined by the IEEE 802.11 (CSMA, or "listen before talk") requires a special attention to all interference issues.In this scenario, IEEE WLANs are unable to exploit all their potential. However, intelligent radio resource management (RRM) policies could be applied to minimize the harmful effects of interference and an uneven load distribution. Throughout this dissertation, it is shown that efficient RRM mechanisms are able to improve notably the performance of a legacy IEEE WLAN.This thesis explores ways of understanding the performance issues that are endemic to IEEE 802.11 WLANs, as well as ways of minimizing these negative effects by means of radio resource management. In fact, these problems are not new and have been studied extensively since the advent of mobile communications networks, but the particular characteristics of the 802.11 WLANs require new approaches.RRM mechanisms in the field of IEEE 802.11 WLANs are basically intended to reduce contention and interference. This reduction is translated into an improved Quality of Experience (QoE), as perceived by the users. To this end, RRM should provide efficient channel allocation mechanisms, modulation selection algorithms, power control and load balancing. Given the dynamic nature of radio propagation, and due to user mobility, the parameters that define the wireless environment vary in time. Therefore, in order to maintain the required performance, we should find mechanisms that allow a dynamic and automatic reconfiguration of the network in response to the changes in the environment. To sum up, we build our scenario of interest with intelligent Wi-Fi devices capable of cooperating either in a centralized or a distributed manner, in order to make a better use of the shared and scarce radio resources.Our contribution to RRM on WLANs starts with the study and characterization of interference in the particular field of IEEE 802.11 networks. Following, we develop a capacity model for large WLAN deployments that takes both the effect of carried traffic and inter-cell interference into account. The model also includes the effect of rate adaptation. These capacity estimations are useful to evaluate the benefits of a RRM mechanism, for example, it was used as the metric observed by a frequency management approach. This frequency assignment mechanism makes use of all the available spectrum (overlapping and non-overlapping ISM channels), since it takes the effects of both co-channel and adjacent-channel interference into account. In order to cope with the uneven load distribution usually found on hot-spots, two load balancing mechanisms are proposed after defining the concept of load: a client-driven approach, and a cell-breathing mechanism. All these mechanisms need to be integrated into a single architecture. In this regard, two radio resource management architectures are developed: a centralized architecture, as part of the UAMN project, and a distributed scheme.
|
2 |
Contribution to Dynamic Spectrum Assignment in multicell OFDMA networksBernardo Alvarez, Francisco 01 June 2010 (has links)
La próxima cuarta generación (4G) de redes de comunicaciones móviles celulares considera una interfaz radio basada en OFDMA (Orthogonal Frequency Division Multiple Access). Esta tecnología ofrece robustez a la propagación multicamino y diversidad en frecuencia gracias a la división del ancho de banda de operación en un conjunto de pequeños subcanales en frecuencia para así alcanzar un uso eficiente del espectro. Sin embargo, un importante desafío en una interfaz radio OFDMA es la manera en la que los subcanales en frecuencia se asignan a las distintas celdas. En primer lugar, la carga de tráfico podría variar a lo largo del tiempo y del espacio, de modo que los clásicos patrones fijos de asignación de espectro (es decir, los esquemas de planificación de frecuencias) pueden conducir a una carencia de recursos en ciertas celdas o a una falta de aprovechamiento de los mismos en otras. En segundo lugar, los futuros marcos reguladores del espectro cambiarán la mentalidad sobre su uso, planteando la coexistencia de usuarios primarios y secundarios del espectro en una misma área geográfica. Por lo tanto, una adecuada gestión del espectro primario podría facilitar la aparición de oportunidades del uso del espectro para usuarios secundarios a la vez que el operador podría obtener una nueva entrada de ingresos por ese uso. Finalmente, los futuros escenarios celulares tenderán a ser descentralizados, especialmente con la aparición de nuevos despliegues basados en femtoceldas (puntos de acceso de limitada cobertura desplegados por el propio usuario en la banda espectral en la que el operador tiene licencia), donde se requerirá un alto grado de independencia a la hora de decidir los canales que usa cada femtocelda, ya que, obviamente, las tareas centralizadas planificación de frecuencias tienen poco sentido práctico en estos escenarios.Esta tesis contribuye a la investigación sobre la asignación de espectro en redes móviles celulares 4G basadas en OFDMA proponiendo una solución para manejar dinámicamente la asignación de espectro por celda. Con este fin, se proponen estrategias dinámicas asignación de espectro (en inglés Dynamic Spectrum Assigment: DSA) y un marco práctico para ejecutarlas. Para reducir costes operacionales y la intervención humana en el proceso, el marco DSA propuesto se ha diseñado basándose en conceptos de autoorganización de modo que la red puede de forma autónoma (i) observar el funcionamiento de la asignación actual de espectro, (ii) analizar si una nueva asignación de espectro es necesaria, y (iii) decidir una nueva asignación de espectro que se adapte mejor a las condiciones de la red. Además, se propone una arquitectura funcional centralizada y descentralizada que permite que el marco DSA pueda aplicarse a varios escenarios, desde escenarios macrocelulares donde típicamente se emplea un control centralizado, a futuros escenarios con femtoceldas donde los nodos son prácticamente independientes y requieren de decisiones autónomas a nivel de celda para la asignación de espectro. La tarea de decisión del marco DSA reside en las estrategias DSA propuestas, donde una de ellas se basa en el aprendizaje máquina para explotar el conocimiento adquirido previamente en el pasado. Además, esta estrategia tiende a seleccionar una asignación de espectro óptima en el sentido de que maximiza una señal de recompensa definida apropiadamente en términos de métricas del funcionamiento de la red (e.g., eficiencia espectral, SINR, entre otras). Ciertamente, la autoorganización y el aprendizaje máquina en el contexto de la asignación de espectro en interfaces radio basadas en OFDMA se han explotado poco y constituyen así una novedad importante derivada del trabajo de esta tesis.Los resultados revelan importantes mejoras sobre estrategias del estado del arte en términos de eficiencia espectral (en bits/s/Hz), satisfacción de la calidad de servicio de los usuarios, fairness entre el throughput obtenido por los usuarios, y la capacidad para generar oportunidades para el uso secundario del espectro en grandes áreas geográficas. También, el marco DSA propuesto basado en autoorganización muestra atractivas capacidades desde la perspectiva del despliegue inicial, donde los nodos son capaces de autoconfigurarse después de su encendido introduciendo un impacto mínimo en sistema ya desplegado. Así el marco propuesto constituye una contribución práctica para solucionar el despliegue de millares de femtoceldas en un escenario macrocelular. / Next fourth generation (4G) of cellular mobile networks envisage a radio interface based on OFDMA (Orthogonal Frequency Division Multiple Access). OFDMA offers frequency diversity and robustness against multipath channel propagation thanks to the division of a wide bandwidth into small OFDMA frequency resources, so that an efficient spectrum usage is attained. However, one important challenge in a 4G OFDMA-based radio interface of a cellular network is the way in which OFDMA frequency resources are assigned to cells. First, intercell interference must be mitigated to achieve the highest spectral efficiency. Second, traffic loads could vary along time and space, so typical fixed spectrum assignment patterns (i.e., frequency planning) could lead to lack of spectrum resources in some cells or underutilization of them in others. Third, future regulatory spectrum frameworks will change the mindset about the usage of the spectrum by planning the co-existence of primary (licensees) and secondary users of the spectrum in the same geographical area. Hence, an adequate primary management of the spectrum could ease the appearance of spectrum usage opportunities for secondary users at the same time that the primary operator could obtain a new revenue income for that usage. Finally, future cellular scenarios will tend to be decentralized, especially with the appearance of new femtocell deployments (short-range user-deployed access points in the operator's licensed spectrum band), where a high degree of independency when deciding the usage of OFDMA frequency resources will be needed, since, obviously, centralized frequency planning tasks has little practical sense in those scenarios.This thesis contributes to the research on the spectrum assignment in 4G OFDMA-based mobile cellular networks by proposing a solution to dynamically manage the cell-by-cell spectrum assignment. To this end, adequate Dynamic Spectrum Assignment (DSA) strategies and a practical framework to execute them are proposed. In order to reduce operational costs and to reduce human intervention, the DSA framework has been designed based on self-organization so that the network is able to autonomously (i) observe the performance of current spectrum assignment, (ii) analyze if a new spectrum assignment is needed, and (iii) decide a new spectrum assignment to better adapt to networks conditions. Furthermore, a centralized and decentralized functional architecture is proposed so that the framework can be applied to a vast number of scenarios, ranging from typical macrocell scenarios where centralized control is employed, to future femtocell scenarios where nodes are almost independent and require autonomous spectrum assignment decisions at the cell level. The decision task of the framework resides on proposed DSA strategies, where one of them is based on machine learning to exploit knowledge previously acquired in the past. Moreover, this machine learning strategy tends to select a spectrum assignment that is optimal in the sense that maximizes a given reward signal appropriately defined in terms of network performance metrics (e.g., spectral efficiency, SINR, among others). Certainly, self-organization and machine learning on the context of spectrum assignment in OFDMA based radio interfaces have been little exploited and thus constitutes a major novelty of the work of this thesis.Performance results reveal important improvements over state-of-the-art strategies in terms of spectral efficiency (i.e. in bits/s/Hz), users' QoS satisfaction, fairness between the throughput obtained by users, and capacity for generating opportunities for secondary spectrum usage in large geographical areas. Also, the proposed DSA framework, based on self-organization, demonstrates appealing capabilities from the perspective of initial deployment, where nodes are able to self-configure after switch-on introducing a minimal impact on the already deployed system, being then a practical contribution to solve the deployment of thousands of femtocells in macrocell environments.
|
3 |
Electromagnetic propagation in tunnelsIzquierdo Fernández, Benjamín 22 September 2011 (has links)
Introduction of wireless communications systems in railway communications are at the origin of this thesis. Ifercat, the company in charge of the development of Línia 9 of Barcelona Metro, decided that wireless systems were employed in order to increase efficiency and safety. For this reason, characterisation of ISM 5.8GHz band in tunnel environments for broad band wireless train communications becomes necessary. Tunnel environments constitute harsh environments due to humidity, obstacles, power systems, moving trains, curves¿ The Automatic Train Control system requires a 20MHz bandwidth for train-to-ground video transmission in order to get on-board information and surveillance.
Given that Línia 9 was at the early stages of its development at the beginning of the study, a dual-polarised spectral simulator was developed first. Spectral techniques work in both spatial and spatial-frequency domain and are extremely adaptable to changes in the tunnel cross section as the wave front passes down the tunnel. Efficiency of this technique comes from the well-known properties of FFT algorithms. Spectral techniques provide good near-field predictions and can model different antenna configurations easily. On the other hand, boundary conditions present some issues that must be overcome. Long tunnels also represent a problem in terms of required memory space.
The parabolic equation has been used to enhance the performance of spectral techniques far from the source. They complement each other well because parabolic conditions require smooth variations in one direction, thus far from the source, where only field components propagating parallel to the tunnel axis remain, in order to provide accurate results. Application of Leontovich boundary conditions ensures proper solution at the change of media and its low computational cost permits acceleration of predictions.
These two techniques are then combined to verify the measurement campaigns developed at metro tunnels during the thesis. MIMO schemes are used to enhance the system throughput and simulation predictions are compared to measurements with good results. The work presented in this thesis consisted first on implementing both simulators and verifying their correct behaviour with theoretical analytical solutions. Secondly, predictions are compared with measurement campaigns carried out in Barcelona Metro environments. The study focuses on EM attenuation, field distribution, fading characterisation, antenna location and MIMO processing at the frequency band of interest.
|
Page generated in 0.0546 seconds