• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 11
  • 4
  • 3
  • 3
  • Tagged with
  • 34
  • 11
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Zusammenhang zwischen physikalischer Dosimetrie und DNA Doppelstrangbrüchen in Lymphozyten nach Radionuklidtherapie / Relationship between internal dosimetry and DNA double strand breaks in lymphocytes after radionuclide therapy

Eberlein, Uta January 2015 (has links) (PDF)
In der nuklearmedizinischen Therapie werden Radiopharmaka meist systemisch verabreicht. Primär werden dafür, wegen der kurzen Reichweite, beta-Strahler eingesetzt. Als Folge davon verteilt sich das Radiopharmakon im Körper, reichert sich in Organen und Zielstrukturen an und bestrahlt somit den Körper intern, im Gegensatz zur externen Bestrahlung bei der Strahlentherapie. Das Verteilungsmuster der verabreichten Aktivität im Körper wird durch die chemischen und physikalischen Eigenschaften des Radiopharmakons bestimmt. Außerdem sind die Aktivität und die Art der Anreicherung ausschlaggebend für die durch ionisierende Strahlung deponierte Energie im Körper, der Energiedosis. Gemeinsam haben externe und interne Bestrahlungsverfahren, dass der Patient ionisierender Strahlung ausgesetzt ist, die nicht nur die kranken Zellen zerstört, sondern auch gesunde Zellen schädigen kann. Dies geschieht durch direkte oder indirekte Wechselwirkung der Strahlung mit der DNA, die zur Schädigung der DNA-Struktur führt. Am häufigsten sind dabei Einzelstrangbrüche und Basenschäden. Die Doppelstrangbrüche sind im Vergleich zu Einzelstrangbrüchen und Basenschäden sehr selten aber sehr viel schädlicher für die Zelle, da die Reparatur komplizierter ist. Somit sind diese primär für den Zelltod oder für die Folgen nach fehlerhafter Reparatur verantwortlich. Eine sehr schnelle Antwort auf strahleninduzierte oder durch andere Stoffe, wie z.B. zytotoxische Substanzen, induzierte Doppelstrangbrüche ist die Phosphorylierung der Histon H2 Variante H2AX, die gamma-H2AX genannt wird. Zusätzlich reichert sich das Protein 53BP1 nach dem Erkennen eines Doppelstrangbruches durch Sensorproteine sofort am Chromatin, das den Doppelstrang umgibt, an. Damit ist 53BP1 ein weiterer Biomarker, der strahleninduzierte Doppelstrangbrüche sehr effektiv nachweisen kann und der auf sehr verlässliche Weise mit gamma-H2AX kolokalisiert. Mittels Immunfluoreszenzfärbung lassen sich gamma-H2AX und 53BP1 als umschriebene „Foci“, im Zellkern mikroskopisch darstellen und zählen. Unter der Annahme, dass ein Focus einem Doppelstrangbruch entspricht, kann die Anzahl der Foci im Zellkern als quantitativer Biomarker für DNA Doppelstrangbrüche und damit für die Strahlenexposition und Strahlenwirkung verwendet werden. Zudem zeigen Studien der Induktion von gamma-H2AX nach externer Bestrahlung von unterschiedlichen Gewebearten Linearität zwischen der Energiedosis und der Zahl der Foci im Zellkern. Weitere Studien beschäftigen sich mit den Auswirkungen externer Bestrahlung auf Patienten, aber nur wenige mit offenen radioaktiven Substanzen. Ziele dieser Arbeit waren daher: 1. Die Generierung einer bisher noch nicht beschriebenen in-vitro Kalibrierkurve nach interner Bestrahlung von Vollblut mit den in der Therapie eingesetzten beta-Strahlern. 2. Die gleichzeitige Bestimmung der physikalischen Dosis sowie der strahleninduzierten Anzahl der Foci in Lymphozyten, gewonnen aus Blutproben von Patienten nach Radiopeptidtherapie mit Lu-177 und Radioiodtherapie mit I-131. 3. Eine umfassende Beschreibung der Induktion und der Abnahme der Foci in den Lymphozyten aus den Blutproben der Patienten unter Einbeziehung der in-vitro Kalibrierung, um den dosis- und zeitabhängigen Verlauf der Anzahl der strahleninduzierten Foci zu bestimmen. Für die in-vitro Kalibrierung mit I-131 und Lu-177 wurden bei Probanden Blutproben gewonnen und mit unterschiedlichen Aktivitätskonzentrationen ergänzt. Das Ziel war, eine Energiedosis bis 100mGy zu erhalten. Das Ergebnis war, dass sich die Zahl der strahleninduzierten Foci in Abhängigkeit von der Energiedosis gut durch eine lineare Funktion beschreiben lässt, so wie es auch für die externe Bestrahlung bereits gezeigt wurde. Die Patientenstudien befassten sich mit dem Zusammenhang zwischen der im Blut deponierten Energiedosis und der Anzahl und dem zeitlichen Verlauf der induzierten Doppelstrangbrüche im peripheren Blut von Patienten unter Peptidrezeptor-Radionuklidtherapie mit Lu-177 DOTATATE/-TOC und Patienten unter Radioiodtherapie mit I-131 bei Ablationstherapien nach Operation eines differenzierten Schilddrüsenkarzinoms. Die durchschnittliche Anzahl induzierter DSB-Foci zeigte in den frühen Zeitpunkten einen linearen dosisabhängigen Anstieg. In den ersten Stunden nach Therapie stimmten die in-vitro Kalibrierung und die Zahl der strahleninduzierten Foci sowohl für Lu-177 als auch für I-131 für die Patientendaten gut überein. Die späteren Zeitpunkte werden durch eine Abnahme der Dosisrate und der Foci-Anzahl, bedingt durch Reparatur der DNA-Schäden, charakterisiert. Überstiegen die Blutdosiswerte in der ersten Stunde jedoch 20mGy (nur nach I-131-Gabe beobachtet), dann war die Induktion eines schnellen Reparaturprozesses festzustellen. Diese experimentellen Ergebnissen und Modellierungen beschreiben erstmalig die Dosisabhängigkeit und den zeitlichen Verlauf der in-vitro und in-vivo DNA-Schadensantwort nach Inkorporation von beta-emittierenden Radionukliden. / In radionuclide therapy radiopharmaceuticals are administered mostly systemically. Primarily, beta-emitters are used because of their short range in tissue. As a result the radiopharmaceutical distributes within the human body and accumulates in organs and target structures. Thus, the body is irradiated internally, in contrast to external irradiation in radiotherapy. The pattern of the activity distribution within the human body is determined by the physical and chemical properties of the radiopharmaceutical. Furthermore, the amount of activity and its accumulation in organs or tissues is essential for the calculation of the absorbed dose which defines the energy deposited in the body by ionizing radiation. During internal or external irradiation, patients are exposed to ionizing radiation which does not only destroy the malignant cells but also damages healthy tissue and cells. This is mainly caused by direct and indirect interaction of the radiation with the DNA which damages the DNA structure. Most frequently, there are single strand breaks and base damages. DNA double strand breaks (DSBs) are rare; nevertheless, they are the most critical lesions for cells as repairing the damage is difficult. Unrepaired or misrepaired DNA could cause mutations, chromosomal aberrations or lead to cell death. The formation of a DNA DSB in nuclear chromatin results in the rapid phosphorylation of the histone H2 variant H2AX, then called gamma-H2AX. Furthermore, DSBs also recruit the damage sensor 53BP1 to the chromatin surrounding the DSBs, which leads to 53BP1 and gamma-H2AX co-localization in the chromatin surrounding a DSB. By immunofluorescence staining with gamma-H2AX and 53BP1 antibodies those biomarkers can be addressed by microscopically visible DNA damage protein foci, this is also known as the DNA damage focus assay. With progression of DSB repair, gamma-H2AX and 53BP1 foci disappear. It is assumed that one focus corresponds to one DSB. Therefore, the number of foci per cell can be used as a quantitative biomarker for DNA double strand breaks and hence for radiation exposure and radiation effects. Most studies dealing with the DNA damage focus assay performed in the last years were looking only on the effect of external irradiation after external radiation therapy or after diagnostic radiology procedures, but only few with the effects after administration of radiopharmaceuticals. Therefore, the aims of this thesis were: 1. To develop a method to generate an in-vitro calibration curve for the DSB focus assay after internal irradiation with beta-emitting radionuclides by creating a low dose and low dose-rate blood irradiation situation in-vitro, at dose-rates that are similar to the ones that have been observed in nuclear medicine patients. 2. To determine the absorbed dose and the number of radiation-induced foci in lymphocytes by sampling blood from patients after radiopeptide therapy with Lu-177 and radioiodine therapy with I-131. 3. To describe comprehensively the temporal and dose-dependent behavior of the DNA damage focus assay in radiation treatment-naive patients after their first radionuclide therapy using the results of the in-vitro calibration. For the in-vitro calibration with I-131 and Lu-177 blood samples For the in-vitro calibration with I-131 and Lu-177 blood samples were drawn from volunteers. Different activity concentrations were added to the samples for achieving absorbed doses up to 100mGy. As a result it was shown that the number of radiation-induced foci were linearly dependent of the absorbed dose. This is the same result that has been shown after external irradiation. The patient studies addressed the relationship between the absorbed dose to the blood and the number and temporal behavior of radiation-induced DNA double strand breaks in peripheral blood samples under radiopeptide therapy and under radioiodine therapy. The average number of radiation-induced foci showed a linear dose-response relationship within the first hours after administration of the radiopharmaceutical. The slope of the in-vitro calibration curve was in good agreement with the slopes of the linear functions fitted to the in-vivo data for Lu-177 and I-131. Later time points were characterized by a diminishing number of radiation-induced foci which was in accordance with the progression of DNA repair and the declining dose rates. Most patients treated with I-131 exceeded 20mGy in the first hour and in these patients the onset of a fast repair component was observed. With the experimental results and model calculations presented in this work, for the first time a dose-response relationship and a description of the time course of the in-vitro and in-vivo damage response after internal irradiation of beta-emitters could be established.
12

Eine Methodik zur Entwicklung und Herstellung von Radiumtargets

Harfensteller, Mark January 2006 (has links)
Zugl.: München, Techn. Univ., Diss., 2006
13

Sorption behaviour of long-lived fission products and actinides in clay and rock

Kipatsi, Heino. January 1983 (has links)
Thesis (Doctoral)--Chalmers tekniska högskola and Göteborgs universitet, Göteborg, Sweden, 1983.
14

Radiochemische Analyse langlebiger kosmogener Radionuklide in Marsmeteoriten und Chondriten Wirkungsquerschnitte, Produktionsraten und Modellrechnungen /

Bastian, Thomas. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Köln.
15

Sledování radionuklidové čistoty 99mTc získaného elucí z radionuklidového generátoru / Monitoring radionuclide purity of 99mTc obtained by elution from a radionuclide generátor

Goliášová, Hedvika January 2013 (has links)
The work includes basic information about the contaminating radionuclides contained in the eluate obtained from 99mTc molybdenum- technecium generator. Methods of qualification and quantification of these contaminants are designed and discussed theoretically. The results of measurements of energy spectra of the eluate 99mTc are presented and interpreted in a conclusion.
16

Zeit- und Dosisabhängigkeit von DNA-Schäden induziert durch interne Bestrahlung mit unterschiedlichen Radionukliden / Time and dose dependence of DNA damage induced by internal irradiation with various radionuclides

Schumann, Sarah January 2022 (has links) (PDF)
In der Nuklearmedizin werden radioaktive Substanzen eingesetzt, um zu therapeutischen Zwecken gezielt bösartiges Gewebe zu zerstören oder in diagnostischen Anwendungen Stoffwechselvorgänge bildlich darzustellen. Die ionisierende Strahlung der eingesetzten Radionuklide kann jedoch auch DNA-Schäden in gesunden Zellen verursachen. DNA-Doppelstrangbrüche gehören dabei zu den kritischsten Läsionen, da sie schwer zu reparieren sind und eine fehlerhafte Reparatur zu Mutationen oder zum Zelltod führen kann. Während Radionuklidtherapien ist daher in Risikoorganen darauf zu achten, dass die deponierte Energie pro Masse, die Energiedosis, bestimmte Werte nicht überschreitet. Zu diesen Risikoorganen gehört auch das blutbildende System. Da eine Abschätzung der Energiedosis im Knochenmark häufig über die Bestimmung der Energiedosis im Blut als Surrogat erfolgt, ist deren Kenntnis von besonderem Interesse. In dieser Arbeit wurden daher Berechnungen der Energiedosis im Blut nach interner Bestrahlung durchgeführt und die Ergebnisse mit der Anzahl an strahlungsinduzierten DNA-Doppelstrangbrüchen in PBMCs korreliert. Zur Quantifizierung der DNA-Schäden wurden die Biomarker \(\gamma\)-H2AX und 53BP1 verwendet, die nach Entstehung eines Doppelstrangbruchs um diesen akkumulieren und sich durch Immunfluoreszenzfärbung als mikroskopische Foci sichtbar machen und quantifizieren lassen. Dadurch ermöglicht der \(\gamma\)-H2AX+53BP1-Assay einen quantitativen Nachweis strahlungsinduzierter Doppelstrangbrüche. Somit konnten im Rahmen dieser Arbeit neue Kenntnisse über die Dosisabhängigkeit von DNA-Schäden in PBMCs während interner Bestrahlung mit unterschiedlichen Radionukliden sowohl ex vivo als auch in vivo gewonnen werden. Ex-vivo-Untersuchungen haben den Vorteil, dass sie unter gleichbleibenden, gut definierten Bedingungen durchgeführt werden können und somit eine Analyse der Induktion von Doppelstrangbrüchen bei festgelegten Energiedosen und einer konstanten Bestrahlungsdauer erlauben. In dieser Arbeit wurden Blutproben von gesunden Versuchspersonen durch Zugabe von Radionukliden in bestimmten Aktivitätskonzentrationen eine Stunde lang intern bestrahlt. Für die Bestrahlung wurden die \(\alpha\)-Emitter \(^{223}\)Ra und \(^{224}\)Ra, die \(\beta\)\(^{-}\)-Emitter \(^{177}\)Lu und \(^{90}\)Y, der \(\beta\)\(^{+}\)-Emitter \(^{68}\)Ga und der \(\gamma\)-Emitter \(^{99m}\)Tc verwendet. Der untersuchte Energiedosisbereich lag zwischen 5 mGy und 136 mGy. Nach der Bestrahlung von Blutproben mit \(\beta\)- beziehungsweise \(\gamma\)-Emittern wurde beobachtet, dass die Anzahl der strahlungsinduzierten \(\gamma\)-H2AX+53BP1-Foci (RIF) in den PBMCs linear mit der Energiedosis im Blut ansteigt. Zudem zeigte sich, dass die Induktion der RIF unabhängig vom verwendeten Radionuklid und unabhängig von der Versuchsperson ist. Nach der Bestrahlung von Blutproben mit \(\alpha\)-Emittern waren zusätzlich zu den nach Expositionen mit \(\beta\)- beziehungsweise \(\gamma\)-Emittern beobachteten kleinen, runden Foci auch \(\gamma\)-H2AX+53BP1 enthaltende Spuren \(\alpha\)-Spuren) in den Zellkernen erkennbar, welche die Trajektorien der emittierten \(\alpha\)-Teilchen darstellten. Es konnte gezeigt werden, dass die Anzahl dieser \(\alpha\)-Spuren linear mit der Energiedosis im Blut zunimmt und damit ein geeigneter Parameter für die Biodosimetrie nach Expositionen mit \(\alpha\)-emittierenden Radionukliden ist. Auch in vivo wurde die Dosisabhängigkeit der DNA-Doppelstrangbrüche während der internen Bestrahlung durch Radionuklide mit unterschiedlichen Emissionseigenschaften untersucht. Aufgrund der neuen, vielversprechenden Entwicklungen von Radiopharmaka zur Therapie und Diagnostik des Prostatakarzinoms in den letzten Jahren wurden dafür Blutproben von Prostatakarzinom-Patienten während Therapie mit [\(^{177}\)Lu]Lu-PSMA I&T, während PET/CT-Diagnostik mit [\(^{68}\)Ga]Ga-PSMA I&T und während Therapie mit [\(^{223}\)Ra]RaCl\(_2\) untersucht. Während Therapie mit [\(^{177}\)Lu]Lu-PSMA I&T zeigte sich, dass die Anzahl der RIF in den ersten Stunden nach Therapiebeginn durch eine lineare Anpassungskurve angenähert werden kann, die mit der Energiedosis im Blut ansteigt, gefolgt von einem Rückgang der RIF zu späteren Zeitpunkten, der durch die DNA-Reparatur erklärt werden kann. Die gesamte Energiedosis im Blut lag im Mittel bei (109 \(\pm\) 28) mGy. Der linear dosisabhängige Anstieg der RIF zu Therapiebeginn gleicht der dosisabhängigen Induktion der RIF ex vivo nach Bestrahlung mit \(\beta\)- und \(\gamma\)-emittierenden Radionukliden und kann gut mit der entsprechenden Ex-vivo-Kalibrierkurve beschrieben werden. Zu späteren Zeitpunkten (48 h und 96 h nach Verabreichung) konnte in dieser Arbeit eine lineare Korrelation zwischen der Anzahl der noch verbleibenden RIF und der Dosisleistung nachgewiesen werden. Eine signifikante Korrelation der Anzahl der RIF 96 h nach Verabreichung mit dem PSA-Wert deutet zudem darauf hin, dass ein Zusammenhang mit klinischen Parametern besteht. Ein signifikanter Anstieg der \(\gamma\)-H2AX+53BP1-Foci konnte auch nach Verabreichung von [\(^{68}\)Ga]Ga-PSMA I&T für diagnostische PET/CT-Untersuchungen beobachtet werden, obwohl die Energiedosen im Blut bis zum PET/CT-Scan nur < 3 mGy betrugen. Im Vergleich zur Ex-vivo-Kalibrierkurve war die Steigung der linearen Anpassungskurve in vivo im Bereich < 3 mGy in dieser Studie etwa um ein Zehnfaches höher, was auf eine mögliche Hypersensitivität im Niedrigdosisbereich hindeuten könnte. Der Beitrag der CT zur Energiedosis im Blut konnte durch Ex-vivo-Experimente auf etwa 12 mGy abgeschätzt werden. Auch während Therapie mit [\(^{223}\)Ra]RaCl\(_2\) lagen die berechneten Energiedosen im Blut im Niedrigdosisbereich < 17 mGy. Trotzdem konnten in dieser Studie erstmalig \(\alpha\)-Spuren in vivo nach der Verabreichung eines \(\alpha\)-emittierenden Radionuklids quantifiziert werden, deren Anzahl 3 h und 4 h nach Verabreichung des Radiopharmakons signifikant erhöht war. Auch zu späten Zeitpunkten, bis vier Wochen nach Therapiebeginn, waren noch \(\alpha\)-Spuren nachweisbar, was auf eine unvollständige Reparatur der komplexen, durch die \(\alpha\)-Teilchen induzierten DNA-Schäden hinweisen könnte. Leider erlaubte die geringe Anzahl an Patienten und Datenpunkten keine zuverlässigen Korrelationen mit der Energiedosis oder mit klinischen Parametern. Nachdem in dieser Arbeit gezeigt werden konnte, dass DNA-Schäden nach interner Bestrahlung mit \(\alpha\)-, \(\beta\)- und \(\gamma\)-emittierenden Radionukliden mit Hilfe des \(\gamma\)-H2AX+53BP1-Assays zuverlässig nachgewiesen und anhand der Schadensgeometrie unterschieden werden können, wäre es in Zukunft interessant, DNA-Schäden auch nach Bestrahlung mit Radionuklidgemischen zu untersuchen. Dies könnte sowohl im Hinblick auf den Nachweis von Inkorporationen bei Strahlenunfällen hilfreich sein als auch zu einem besseren Verständnis der Effekte bei Behandlungen mit Radionuklidgemischen beitragen, welche vielversprechende Möglichkeiten für nuklearmedizinische Therapien bieten. Zudem zeigen die Ergebnisse dieser Arbeit, dass insbesondere im für die Diagnostik relevanten Bereich sehr niedriger Energiedosen < 10 mGy weiterer Forschungsbedarf besteht. Durch die Untersuchung der dosisabhängigen Reparatur der durch interne Bestrahlung induzierten DNA-Schäden könnte beispielsweise analysiert werden, ob die Reparaturfähigkeit im Niedrigdosisbereich eingeschränkt ist. Außerdem wäre es gerade im Bereich niedriger Dosen von Interesse, zu untersuchen, inwiefern Beobachtungen ex vivo das Verhalten in vivo geeignet repräsentieren. Um die erhöhten statistischen Unsicherheiten im Niedrigdosisbereich zu reduzieren, könnten zukünftig Verbesserungen auf dem Gebiet der automatisierten Auswertung der \(\gamma\)-H2AX+53BP1 enthaltenden Foci und Spuren hilfreich sein. Weitere Ziele zukünftiger Forschungsvorhaben könnten gezielte Untersuchungen zu Korrelationen zwischen der dosisabhängigen Induktion und Reparatur von DNA-Schäden und klinischen Parametern sowie die Analyse von DNA-Schäden während mehrerer Therapiezyklen darstellen. In Zusammenhang mit der Analyse klinischer Parameter wäre es denkbar, dass biodosimetrische Auswertungen zukünftig auch zur personalisierten Therapieplanung oder auch zur Vorhersage des Therapieerfolgs dienen und somit langfristig zu einer Optimierung nuklearmedizinischer Therapien beitragen könnten. / In nuclear medicine, radioactive substances are applied for therapeutic purposes to destroy malignant tissue, or in diagnostic applications to visualize metabolic processes. However, the ionizing radiation of the applied radionuclides can also cause DNA damage in healthy cells. Among these, DNA double-strand breaks belong to the most critical lesions because they are difficult to repair and misrepair can lead to mutations or cell death. Therefore, during radionuclide therapies, it is of great importance to ensure that the deposited energy per mass, the absorbed dose, does not exceed certain values in organs at risk. One of these organs at risk is the hematopoietic system. As the absorbed dose to the bone marrow is often estimated by determining the absorbed dose to the blood as a surrogate, knowledge of the latter is of particular interest. Therefore, in this thesis, calculations of the absorbed dose to the blood after internal irradiation were performed and the results were correlated with the number of radiation-induced DNA double-strand breaks in PBMCs. To quantify DNA damage, the biomarkers \(\gamma\)-H2AX and 53BP1 were used, which accumulate around a double-strand break after its formation and which can be visualized and quantified as microscopic foci by immunofluorescence staining. Consequently, the \(\gamma\)-H2AX+53BP1 assay allows a quantitative detection of radiation-induced double-strand breaks. Thus, by combining absorbed dose calculations with a quantitative analysis of DNA damage in PBMCs during internal irradiation with various radionuclides both ex vivo and in vivo, new knowledge was gained in the context of this work. Ex-vivo examinations have the advantage that they can be carried out under constant, well-defined conditions and thus allow an analysis of the induction of double-strand breaks at preset absorbed doses and a constant irradiation duration. In this work, blood samples from healthy test persons were internally irradiated for one hour by adding radionuclides at defined activity concentrations. For the irradiation, the \(\alpha\)-emitters \(^{223}\)Ra and \(^{224}\)Ra, the \(\beta\)\(^{-}\)-emitters \(^{177}\)Lu and \(^{90}\)Y, the \(\beta\)\(^{+}\)-emitter \(^{68}\)Ga and the \(\gamma\)-emitter \(^{99m}\)Tc were used. The absorbed dose ranged from 5 mGy to 136 mGy. After irradiating blood samples with \(\beta\)- and \(\gamma\)-emitters, it was observed that the number of radiation-induced \(\gamma\)-H2AX+53BP1 foci (RIF) in the PBMCs increases linearly with the absorbed dose to the blood. Furthermore, it was shown that the induction of RIF is independent of the radionuclide applied and the test person. After irradiating blood samples with \(\alpha\)-emitters, in addition to the small round foci observed after exposure to \(\beta\)- and \(\gamma\)-emitters, \(\gamma\)-H2AX+53BP1 containing tracks (\(\alpha\)-tracks) were visible in the nuclei, which represented the trajectories of the emitted \(\alpha\)-particles. It was shown that the number of these \(\alpha\)-tracks increases linearly with the absorbed dose to the blood and is, therefore, a suitable parameter for biodosimetry after exposure to \(\alpha\)-emitting radionuclides. The absorbed dose dependence of DNA double-strand breaks during internal irradiation with radionuclides with different emission properties was also investigated in vivo. Due to the promising new developments of radiopharmaceuticals for therapy and diagnostics of prostate cancer in recent years, blood samples from prostate cancer patients were examined during therapy with [\(^{177}\)Lu]Lu-PSMA I&T, during PET/CT diagnostics with [\(^{68}\)Ga]Ga-PSMA I&T and during therapy with [\(^{223}\)Ra]RaCl\(_2\). During therapy with [\(^{177}\)Lu]Lu-PSMA I&T, it was shown that the number of RIF in the first hours after therapy start can be approximated by a linear fitting curve, which increases with the absorbed dose to the blood, followed by a decrease in RIF at later time points, which can be explained by DNA repair. The total absorbed dose to the blood was (109 \(\pm\) 28) mGy on average. The linear absorbed dose-dependent increase in RIF at the beginning of therapy is similar to the absorbed dose-dependent induction of RIF ex vivo after irradiation with \(\beta\)- and \(\gamma\)-emitting radionuclides and can be well described with the corresponding ex-vivo calibration curve. At later time points (48 h and 96 h after administration), a linear correlation between the number of remaining RIF and the dose rate was demonstrated in this work. A significant correlation of the number of RIF 96 h after administration with PSA levels also suggests a link to clinical parameters. A significant increase in \(\gamma\)-H2AX+53BP1 foci was also observed after administration of [\(^{68}\)Ga]Ga-PSMA I&T for diagnostic PET/CT examinations, despite the fact that absorbed doses to the blood were only < 3 mGy by the time of the PET/CT scan. Compared to the ex-vivo calibration curve, the slope of the linear in-vivo fitting curve in the range < 3 mGy in this study was approximately ten times higher, which may indicate a possible hypersensitivity in the low dose range. The contribution of the CT to the absorbed dose to the blood was estimated at approximately 12 mGy by ex-vivo experiments. During therapy with [\(^{223}\)Ra]RaCl\(_2\), the calculated absorbed doses to the blood were also in the low dose range < 17 mGy. Nevertheless, this study was the first to quantify \(\alpha\)-tracks in vivo after the administration of an \(\alpha\)-emitting radionuclide, with a significantly increased number of \(\alpha\)-tracks 3 h and 4 h after administration of the radiopharmaceutical. Even at late time points, up to four weeks after therapy start, \(\alpha\)-tracks were still detectable, which could indicate incomplete repair of the complex DNA damage induced by \(\alpha\)-particles. Unfortunately, the small number of patients and data points did not allow reliable correlations with the absorbed dose or clinical parameters. In this thesis, it was shown that DNA damage after internal irradiation with \(\alpha\)-, \(\beta\)- and \(\gamma\)-emitting radionuclides can be reliably detected by applying the \(\gamma\)-H2AX+53BP1 assay and distinguished by damage geometry. For future work, it would be of interest to additionally investigate DNA damage after irradiation with mixtures of radionuclides. This could be helpful for the detection of incorporations after radiation accidents, and could also contribute to a better understanding of the effects of therapeutic applications of radionuclide mixtures, which offer promising opportunities for nuclear medicine therapies. Furthermore, the results of this work show that there is need for further research, especially in the very low dose range < 10 mGy, which is relevant for diagnostics. By investigating the absorbed dose-dependent repair of DNA damage induced by internal irradiation, for example, it could be analyzed whether the repair capability is limited in the low dose range. Particularly in the range of low doses, it would also be of interest to investigate to what extent observations ex vivo adequately represent the behavior in vivo. In order to reduce the increased statistical uncertainties in the low dose range, future improvements in the field of automated evaluation of \(\gamma\)-H2AX+53BP1 containing foci and tracks could be helpful. Further objectives of future research projects could be investigations focussing on correlations between the absorbed dose-dependent induction and repair of DNA damage and clinical parameters as well as an analysis of DNA damage over several therapy cycles. In the context of the analysis of clinical parameters, it is conceivable that biodosimetric assessments could enhance personalized treatment planning or the prediction of therapy success, thus contributing, in the long-term, to an optimization of nuclear medicine therapies.
17

Sorpce radionuklidu85Sr na zeminy z areálu jaderné elektrárny Temelín / Sorption of radionuclid 85Sr to soils from area nuclear power plant Temelín

Reidingerová, Markéta January 2012 (has links)
This thesis is focused on the study of sorption of radionuclide 85 Sr in soil collected in the area of a nuclear power plant Temelín. A single-batch method experiment was used when a solution of radionuclide 85 Sr of known activity was added to the soil. The experiments focussed on the influence of pH with the size of the sorption and the influence of the time of the contact of the solution with the sorption. During the experiment with the value of pH closest to the pH of underground water from the nuclear power plant Temelín, the sorption of soil was somewhere between 31 to 44 %. When the time influence on the sorption was examined, radionuclide 85 Sr was sorbed very quickly. For the comparison of the sorption size in connection with the time, for which it was chosen 120 minutes, the sorption was almost constant, reaching 40 to 48 %. Key words Radioactivity, radionuclide 85 Sr, sorption, nuclear power plant Temelín
18

Plutoniumfingerabdrücke und Brennstoffzyklusstudien für thermische Reaktorkonzepte

Volmert, Benjamin. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2003--Aachen.
19

Rizika spojená s uvolněním radioaktivních látek při transportech na pracoviště nukleární medicíny / Risks connected with the release of radioactive substances during transports to nuclear medicine workplace.

HELEŠIC, Jiří January 2015 (has links)
This thesis deals with analysis and evaluation of risks associated with the release of radioactive materials during the transport, eventual accidents and radiation load handling throughout the all transport chain to nuclear medicine workplace in relation to current legislation and technical support for the transported substances. The theoretical part is focused on describing the current state of these issues, the reasons for using the radionuclides in the Czech Republic, their transport and description of legislation associated with that all. The research part shows the analysis of the health risks of people who might come in contact with the release of radioactivity. Then the analysis solves such consequences. In this work we mapped out the production and use of artificial radionuclides, modes of transportation and its technical security and handling of radionuclides during the transport. We also present the research in some possible accident during the transport. As well as emergency readiness and procedures of the Integrated Rescue System. In discussion there are throughout the commentary compared the following: determined state laws transport safety, radiation burden and risks of transports. In conclusion we found out that the level of legislation and the radiation burden is at an acceptable level. The work comes with its own proposal for improving transportation safety of radionuclides in the Czech Republic and that is to introduce the rights-of-way to vehicles described above.
20

Možná rizika zneužívání radioaktivních materiálů z bývalé úpravny uranových rud MAPE Mydlovary / Possible risks of abuse of radioactive materials from the former uranium ore processing plant MAPE Mydlovary.

ŘEPA, Libor January 2012 (has links)
Possible risks of using radioactive materials are a highly discussed topic nowadays. This work is dealing with this problem and it is focused on possible risks of using radioactive materials from the ex-treatment plant of uranium ores MAPE Mydlovary. In introductory chapters I am describing the current state of ex-treatment plant of uranium ores. I am dealing with the history of operation of MAPE, information about sludge lagoons and about stored sediments in them and other characteristics concerning this operation. For years, sediments in which radionuclides are contained have been stored in treatment plants and that is why I am dealing with ionizing radiation. Because the topic is the using of radioactive materials which can be used mainly by terrorists, I am also describing this worldwide phenomenon of recent years where I first of all focused on super-terrorism using radioactive weapons, namely so-called ?dirty bombs?. The target of this work is to find out possibilities of using radioactive materials from the ex-treatment plant. Therefore I measured values of radioactivity and exposition of radiation at some places with the help of exploratory research. That meant sampling of soils and water and also measurement of power of dose equivalent of radiation gamma. After gathering information of needed radiation values I carried out simulation of possible using of radioactive materials from the premises MAPE. By means of dirty bomb I used the programme TerEx at using radioactive material. Then I carried out several calculations which were focused on inhalation, ingestion or outdoor radiation from radioactive materials and also calculation how much it is necessary to gain a significant source of ionizing radiation. From these sources I have deduced impacts for individuals, society or environment. Based on analysis and evaluation of given problems, my set hypothesis ?By using radioactive materials from the ex-treatment plant of uranium ores MAPE Mydlovary a serious threat to people will not occur? was confirmed. Results of my work can be used as a study material for completing and broadening knowledge about risks resulting from using radioactive materials. Further an increase of foreknowledge and explanation of certain consequences of ionizing radiation on humans from materials from the ex-treatment plant of uranium ores MAPE Mydlovary, for inhabitants of Mydlovary and surrounding areas and also useful information for lay and professional society which is interested in these problems.

Page generated in 0.0385 seconds