• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interprétation de Scènes : perception, fusion multi-capteurs, raisonnement spatio-temporel et reconnaissance d'activités

Bremond, François 02 July 2007 (has links) (PDF)
Scene understanding is the process, often real time, of perceiving, analysing and elaborating an interpretation of a 3D dynamic scene observed through a network of sensors. This process consists mainly in matching signal information coming from sensors observing the scene with models which humans are using to understand the scene. Based on that, scene understanding is both adding and extracting semantic from the sensor data characterizing a scene. This scene can contain a number of physical objects of various types (e.g. people, vehicle) interacting with each others or with their environment (e.g. equipment) more or less structured. The scene can last few instants (e.g. the fall of a person) or few months (e.g. the depression of a person), can be limited to a laboratory slide observed through a microscope or go beyond the size of a city. Sensors include usually cameras (e.g. omni directional, infrared), but also may include microphones and other sensors (e.g. optical cells, contact sensors, physiological sensors, radars, smoke detectors). Scene understanding is influenced by cognitive vision and it requires at least the melding of three areas: computer vision, cognition and software engineering. Scene understanding can achieve four levels of generic computer vision functionality of detection, localisation, recognition and understanding. But scene understanding systems go beyond the detection of visual features such as corners, edges and moving regions to extract information related to the physical world which is meaningful for human operators. Its requirement is also to achieve more robust, resilient, adaptable computer vision functionalities by endowing them with a cognitive faculty: the ability to learn, adapt, weigh alternative solutions, and develop new strategies for analysis and interpretation. The key characteristic of a scene understanding system is its capacity to exhibit robust performance even in circumstances that were not foreseen when it was designed. Furthermore, a scene understanding system should be able to anticipate events and adapt its operation accordingly. Ideally, a scene understanding system should be able to adapt to novel variations of the current environment to generalize to new context and application domains and interpret the intent of underlying behaviours to predict future configurations of the environment, and to communicate an understanding of the scene to other systems, including humans. Related but different domains are robotic, where systems can interfere and modify their environment, and multi-media document analysis (e.g. video retrieval), where limited contextual information is available.
2

Modélisation des relations spatiales entre objets en mouvement

Salamat, Nadeem 07 October 2011 (has links) (PDF)
Les relations spatiales entre les différentes régions dans une image sont utiles pour la compréhension et l'interprétation de la scène représentée. L'analyse Spatio-temporelle d'une scène implique l'intégration du temps dans des relations spatiales entre les objets en mouvement. Les relations spatio-temporelles sont définies dans un intervalle de temps utilisant la géométrie 3D ou l'extension de la géométrie 2D à la dimension temporelle. La modélisation des relations spatiales dynamiques prend en compte la position relative des objets et leurs relations directionnelles, ceci implique les relations topologiques, directionnelles et de distance. Ces relations sont étendues au domaine temporel. Dans notre travail, on décrit une méthode de combinaison d'information topologique et directionnelle où les relations d'Allen floues 1D sont appliquées au domaine spatial. La méthode proposée intègre le flou au niveau des relations. La méthode très gourmande initialement en temps de calcul en raison de l'approximation des objets ainsi qu'à l'algorithme de fuzzification des segments des sections longitudinales est améliorée en utilisant une approximation polygonale adaptée sur les objets considérés. L'algorithme du fuzzification des segments d'une section longitudinale inclut des opérateurs d'agrégation floue. Dans la méthode proposée, Les relations topologiques 2Dsont représentées par un histogramme. Les relations floues n'étant pas exhaustives, un algorithme de défuzzification des relations spatiales a été proposé pour réaliser un ensemble JEPD de relations spatiales. Cet ensemble de relations spatiales est représenté par un graphe de voisinage où chaque nœud du graphe représente la relation topologique et directionnelle. Cette méthode définit des relations spatio-temporelles en utilisant le modèle de données Espace-Temps. Un ensemble de relations spatio-temporelles est également fourni à l'aide de la stabilité topologique. Afin de valider le modèle, nous avons développé des applications fondées sur le raisonnement spatio-temporel proposé. Celui-ci a permit la création de tables de composition pour les relations spatiales topologiques structurées en sous-tables. Les entités de ces sous-tables sont liées les unes aux autres par des relations spatiales. Dans une seconde application, nous avons proposé une méthode de prédiction des évènements entre objets en mouvement fondée sur le même raisonnement spatio-temporel. Les objets en mouvement changeant de position à chaque instant, la prédiction de la nouvelle position spatiale d'un objet tient compte des états de relations spatiales calculées précédemment.
3

Modélisation des relations spatiales entre objets en mouvement / Modeling spatial relations between moving objects

Salamat, Nadeem 07 October 2011 (has links)
Les relations spatiales entre les différentes régions dans une image sont utiles pour la compréhension et l'interprétation de la scène représentée. L'analyse Spatio-temporelle d'une scène implique l'intégration du temps dans des relations spatiales entre les objets en mouvement. Les relations spatio-temporelles sont définies dans un intervalle de temps utilisant la géométrie 3D ou l'extension de la géométrie 2D à la dimension temporelle. La modélisation des relations spatiales dynamiques prend en compte la position relative des objets et leurs relations directionnelles, ceci implique les relations topologiques, directionnelles et de distance. Ces relations sont étendues au domaine temporel. Dans notre travail, on décrit une méthode de combinaison d’information topologique et directionnelle où les relations d'Allen floues 1D sont appliquées au domaine spatial. La méthode proposée intègre le flou au niveau des relations. La méthode très gourmande initialement en temps de calcul en raison de l’approximation des objets ainsi qu'à l'algorithme de fuzzification des segments des sections longitudinales est améliorée en utilisant une approximation polygonale adaptée sur les objets considérés. L'algorithme du fuzzification des segments d'une section longitudinale inclut des opérateurs d'agrégation floue. Dans la méthode proposée, Les relations topologiques 2Dsont représentées par un histogramme. Les relations floues n'étant pas exhaustives, un algorithme de défuzzification des relations spatiales a été proposé pour réaliser un ensemble JEPD de relations spatiales. Cet ensemble de relations spatiales est représenté par un graphe de voisinage où chaque nœud du graphe représente la relation topologique et directionnelle. Cette méthode définit des relations spatio-temporelles en utilisant le modèle de données Espace-Temps. Un ensemble de relations spatio-temporelles est également fourni à l'aide de la stabilité topologique. Afin de valider le modèle, nous avons développé des applications fondées sur le raisonnement spatio-temporel proposé. Celui-ci a permit la création de tables de composition pour les relations spatiales topologiques structurées en sous-tables. Les entités de ces sous-tables sont liées les unes aux autres par des relations spatiales. Dans une seconde application, nous avons proposé une méthode de prédiction des évènements entre objets en mouvement fondée sur le même raisonnement spatio-temporel. Les objets en mouvement changeant de position à chaque instant, la prédiction de la nouvelle position spatiale d'un objet tient compte des états de relations spatiales calculées précédemment. / Spatial relations between different image regions are helpful in image understanding, interpretation and computer vision applications. Spatio-temporal analysis involves the integration of spatial relations changing over time between moving objects of a dynamic scene. Spatio-temporal relations are defined for a selected time interval using 3D geometry or extension of 2D object geometry to the time dimension with sequence occurrence of primitive events for each snapshot. Modeling dynamic spatial relations takes into account the relative object position and their directional relations; this involves the topological, directional and distance relations and their logical extension to the temporal domain. In this thesis, a method for combining topological and directional relations information is discussed where 1D temporal fuzzy Allen relations are applied in spatial domain. Initially, the method has a high computational cost. This computing cost is due to the object approximation and the fuzzification algorithm of segments. The computing time has been using polygonal object approximation. Fuzzification algorithm is replaced with fuzzy aggregation operators for segments of a longitudinal section. In this method, two dimensional topological relations are represented in a histogram. The representation method for two dimensional spatial relations has been changed. These fuzzy relations are not Jointly Exhaustive and Pairwise Disjoint (JEPD). An algorithm for defuzzification of spatial relations is proposed to realize JEPD set of spatial relations, these JEPD spatial relations are represented in a neighborhood graph. In this neighborhood graph, each node represents the topological and directional relation. This method is further extended for defining spatio-temporal relations using space and time data model, a set of spatio-temporal relations are also elaborated using the stability property in topology. In an application, a method for spatio-temporal reasoning based on this new model is developed. Spatio-temporal reasoning consists of developing the composition tables for spatial relations. Composition table for topological relations are rearranged into sub-tables. Entities in these sub-tables are related to each other and mathematical rules are defined for composition of spatial relations which elaborate the relation between entities of sub-tables. In another application, we propose a method for motion event predictions between moving objects. It is a similar process to the spatio-temporal reasoning. Dynamic objects occupy different places at different time points, these objects have multiple choices for subsequent positions and a unique history. Prediction about motion events take into account the history of a moving object and predict about the semantics of a motion event.
4

Modélisation spatio-temporelle multi-niveau à base d'ontologies pour le suivi de la dynamique en imagerie satellitaire / Ontology-based multi-level spatio-temporal modeling for monitoring dynamics in satellite imagery

Ghazouani, Fethi 10 December 2018 (has links)
La modélisation de la dynamique des objets spatio-temporels fait partie des sujets de recherche pour le suivi et l'interprétation des changements affectant le globe terrestre. Pour cela, l'exploitation des images satellitaires se présente comme un moyen efficace qui aide à l'étude de la dynamique des phénomènes spatio-temporels qui peuvent se produire sur la surface de la Terre notamment l'urbanisation, la déforestation, la désertification, etc. Divers modèles et approches ont été proposés pour modéliser les évolutions des objets spatio-temporels. Toutes fois, chaque modèle présente une capacité limitée pour capturer l'évolution des différentes caractéristiques de l'environnement, en plus la structure de représentation utilisée par chaque modèle ne permet pas de saisir complètement la sémantique de l'évolution d'un objet spatio-temporel. Les travaux de notre thèse s'intéressent à la modélisation de la dynamique des objets spatio-temporels pour l'interprétation des changements en imagerie satellitaire. En conséquence, nous avons proposé dans un premier temps une architecture ontologiques multi-niveaux pour la représentation et la modélisation des objets et des processus spatio-temporels dynamiques. Également, nous avons présenté une nouvelle stratégie d'interprétation sémantique de scènes d'images satellites pour l'interprétation de changements. Le cadre applicatif concerne l'interprétation sémantique d'une scène d'images satellites pour l'interprétation des phénomènes de changements, tels que l'urbanisation et la déforestation. Le résultat obtenu est une carte de changements qui pourra guider une meilleure gestion de l'utilisation/couverture des sols. / Modeling the dynamics of spatio-temporal objects is part of the research subjects for monitoring and interpretation of the changes affecting the Earth. Satellite images are an effective way for studying the dynamics of spatio-temporal phenomena, including urbanization, deforestation, flooding, desertification, and so on, that can occur on the surface of the Earth. Various models and approaches have been proposed to model the evolution of the spatio-temporal objects. However, each of these models has a limited ability to capture the evolution of the different characteristics of the environment, and the representation structure used by each model does not fully capture the semantics of the evolution of a spatio-temporal object. The works of our thesis interested in modeling the dynamics of spatio-temporal objects for changes interpretation in satellite imagery. Therefore, we proposed initially a multi-level ontological architecture for representation and modeling the dynamic of spatio-temporal objects and process. Also, we have presented a new semantic scene interpretation strategy for change interpretation in remote sensing imagery. The application Framework concerns the semantic interpretation of a satellite images scenes for change interpretation of phenomena, such as urbanization and deforestation. The result is a change map that can guide better management of the land use/cover.
5

Modélisation des connaissances et raisonnement à base d'ontologies spatio-temporelles : application à la robotique ambiante d'assistance / Knowledge modeling and reasoning based on spatio-temporal ontologies : application to ambient assisted-robotics

Ayari, Naouel 15 December 2016 (has links)
Dans cette thèse, nous proposons un cadre générique pour la modélisation et la gestion du contexte dans le cadre des systèmes intelligents ambiants et robotiques. Les connaissances contextuelles considérées sont de plusieurs types et issues de perceptions multimodales : connaissances spatiales et/ou temporelles, changement d’états et de propriétés d’entités, énoncés en langage naturel. Pour ce faire, nous avons proposé une extension du langage NKRL (Narrative Knowledge Representation and Reasoning) pour parvenir à une représentation unifiée des connaissances contextuelles qu’elles soient spatiales, temporelles ou spatio-temporelles et effectuer les raisonnements associés. Nous avons exploité l’expressivité des ontologies n-aires sur lesquelles repose le langage NKRL pour pallier aux problèmes rencontrés dans les approches de représentation des connaissances spatiales et dynamiques à base d’ontologies binaires, communément utilisées en intelligence ambiante et en robotique. Il en résulte une modélisation plus riche, plus fine et plus cohérente du contexte permettant une meilleure adaptation des services d’assistance à l’utilisateur dans le cadre des systèmes intelligents ambiants et robotiques. La première contribution concerne la modélisation des connaissances spatiales et/ou temporelles et des changements de contexte, et les inférences spatiales, temporelles ou spatio-temporelles. La deuxième contribution concerne, quant à elle, le développement d’une méthodologie permettant d’effectuer un traitement syntaxique et une annotation sémantique pour extraire, à partir d’un énoncé en langage naturel, des connaissances contextuelles spatiales ou temporelles en NKRL. Ces contributions ont été validées et évaluées en termes de performances (temps de traitement, taux d’erreurs, et taux de satisfaction des usagers) dans le cadre de scénarios mettant en œuvre différentes formes de services : assistance au bien-être, assistance de type aide sociale, assistance à la préparation d’un repas / In this thesis, we propose a generic framework for modeling and managing the context in ambient and robotic intelligent systems. The contextual knowledge considered is of several types and derived from multimodal perceptions : spatial and / or temporal knowledge, change of states and properties of entities, statements in natural language. To do this, we proposed an extension of the Narrative Knowledge Representation and Reasoning (NKRL) language to reach a unified representation of contextual knowledge whether spatial, temporal or spatio-temporal and perform the associated reasoning. We have exploited the expressiveness of the n-ary ontologies on which the NKRL language is based to bearing on the problems encountered in the spatial and dynamic knowledge representation approaches based on binary ontologies, commonly used in ambient intelligence and robotics. The result is a richer, finer and more coherent modeling of the context allowing a better adaptation of user assistance services in the context of ambient and robotic intelligent systems. The first contribution concerns the modeling of spatial and / or temporal knowledge and contextual changes, and spatial, temporal or spatial-temporal inferences. The second contribution concerns the development of a methodology allowing to carry out a syntactic treatment and a semantic annotation to extract, from a statement in natural language, spatial or temporal contextual knowledge in NKRL. These contributions have been validated and evaluated in terms of performance (processing time, error rate, and user satisfaction rate) in scenarios involving different forms of services: wellbeing assistance, social assistance, assistance with the preparation of a meal
6

Un cadre algébrique pour le raisonnement qualitatif en présence d'informations hétérogènes : application aux raisonnements multi-échelle et spatio-temporel / An algebraic framework for qualitative reasoning in the presence of heterogeneous information : application to multi-scale and spatio-temporal reasoning

Cohen-Solal, Quentin 11 December 2017 (has links)
Parmi les différentes formes de raisonnement étudiées dans le contexte de l'intelligence artificielle, le raisonnement qualitatif permet d'inférer de nouvelles connaissances dans le contexte d'informations imprécises, incomplètes et dépourvues de valeurs numériques. Il permet par exemple de déduire de nouvelles informations à partir d'un ensemble d'informations spatiales telles que « la France est frontalière de l'Allemagne », « la Suisse est à l'est de la France », « l'Italie est en Europe » et « le Luxembourg est proche de la France ». Il peut également être utilisé pour résoudre des abstractions de problèmes quantitatifs difficiles à résoudre, afin par exemple d'accélérer la résolution de ces problèmes.De nombreux formalismes de raisonnement qualitatif ont été proposés dans la littérature. Ils ne se focalisent cependant que sur un seul aspect du monde, alors que la majorité des applications requièrent la prise en compte d'informations hétérogènes. Afin de répondre à ces besoins, plusieurs combinaisons et extensions de formalismes qualitatifs, comme le raisonnement spatio-temporel et le raisonnement multi-échelle, ont récemment été proposées dans la littérature. Le raisonnement spatio-temporel permet de raisonner dans le contexte d'informations spatiales et temporelles interdépendantes. Le raisonnement multi-échelle permet de raisonner avec des informations de précisions différentes, et en particulier de lever des incohérences apparentes.Dans cette thèse, nous nous intéressons au raisonnement multi-échelle, au raisonnement spatio-temporel et aux combinaisons de formalismes qualitatifs.Nous proposons d'étendre le raisonnement qualitatif temporel multi-échelle pour prendre en compte le fait que les intervalles de temps peuvent être perçus comme des instants à certaines échelles de précision, de formaliser intégralement ce raisonnement et d'étudier la décision de la cohérence dans ce contexte ainsi que sa complexité. Nous montrons en particulier que ce formalisme permet de décider la cohérence et que le problème de décision de la cohérence est NP-complet, même dans le cas le plus simple.En outre, nous proposons un cadre général permettant de raisonner sur les séquences temporelles d'informations qualitatives, une forme de description spatio-temporelle. Ce cadre permet notamment de raisonner dans le contexte d'évolutions complexes. Par exemple, les entités considérées peuvent avoir des caractéristiques préservées au cours du temps, évoluer de manière dépendante les unes par rapport aux autres, tout en ayant un comportement potentiellement irréversible et différent selon leur nature. De plus, dans ce cadre, le raisonnement est plus performant computationnellement que les approches de l'état de l'art. Nous étudions en particulier la décision de la cohérence dans le contexte spécifique de régions mobiles de taille constante, et montrons que ce cadre permet effectivement de décider la cohérence.De surcroît, nous proposons un cadre formel unifiant plusieurs formes d'extensions et de combinaisons de formalismes qualitatifs, incluant le raisonnement multi-échelle et les séquences temporelles. Ce cadre permet de raisonner dans le contexte de chacune de ces combinaisons et extensions, mais également d'étudier de manière unifiée la décision de la cohérence et sa complexité. Nous établissons en particulier deux théorèmes complémentaires garantissant que la décision de la cohérence est polynomiale, et nous les utilisons pour prouver que plusieurs fragments de séquences temporelles sont traitables.Nous généralisons également la définition principale de formalisme qualitatif afin d'inclure des formalismes qualitatifs exclus des définitions de la littérature, importants dans le cadre des combinaisons. / In this thesis, we are interested in qualitative multi-scale reasoning, qualitative spatio-temporal reasoning and combinations of qualitative formalisms.We propose to extend the multiscale temporal reasoning to take into account the fact that time intervals can be perceived as instants at certain scales of precision, to fully formalize this reasoning and to study its consistency problem. We show in particular that this formalism decides consistency and that the consistency problem is NP-complete, even in the simplest case.In addition, we propose a general framework for reasoning on temporal sequences of qualitative information, a form of spatio-temporal description. This framework allows for reasoning in the context of complex evolutions. For example, the considered entities may have characteristics preserved over time, evolve in a dependent manner with respect to each other, while having a potentially irreversible and different behavior depending on their nature. Moreover, in this context, reasoning is computationally more efficient than state-of-the-art approaches. In particular, we study the consistency problem in the specific context of constant-size moving regions, and show that this framework actually decides consistency.Furthermore, we propose a formal framework unifying several forms of extensions and combinations of qualitative formalisms, including multi-scale reasoning and temporal sequences. This framework allows one to reason in the context of each of these combinations and extensions, but also to study in a unified way the consistency problem. In particular, we establish two complementary theorems guaranteeing that the consistency problem is polynomial, and we use them to prove that several fragments of temporal sequences are tractable.

Page generated in 0.1207 seconds