• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 35
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cross-talk between ral and rac pathways in the control of cell migration / Connexions entre les voies ral et rac dans le contrôle de la migration cellulaire

Sadou, Amel 14 March 2012 (has links)
Le mode de coordination parmi les différentes molécules qui régulent la migration reste très peu connu. Ce travail traite de deux voies de transduction régulant la migration: la voie Rac1/WRC (Wave Regulatory Complex) qui contrôle la formation du réseau d’actine au front des cellules migrantes, et la voie RalB/exocyst, dont les mécanismes moléculaires de son implication dans la motilité cellulaire étaient inconnus au début de cette thèse. Rac1 et RalB sont des petites protéines G des familles Rho et Ras, respectivement. Les complexes WRC et exocyst sont leurs effecteurs directs.Au cours de la recherche de connexions entre l’exocyst et des régulateurs de la migration, nous avons trouvé que deux sous-unités de l’exocyst, Exo70 et Sec6, interagissent directement in vitro avec Abi et Cyfip, respectivement, deux sous unités du WRC. De plus, nous avons trouvé que les sous-unités de l’exocyst peuvent interagir in vitro avec le WRC entier. Nous avons également montré que ces deux complexes s’associent in vivo. Sur le plan fonctionnel, l’exocyst est requis pour le positionnement du complexe WRC au front des cellules migrantes. D’autre part, nous avons également trouvé que deux autres sous- unités de l’exocyst Sec8 et Exo84, interagissent avec SH3BP1 (une RhoGAP) en double hybride et en co-immunoprécipitation. SH3BP1 se localise au front des cellules migrantes, et cette localisation dépend de l’exocyst. De façon intéressante, in vivo, la voie RalB/exocyst/SH3BP1 cible spécifiquement Rac1, et non Cdc42. Grâce à plusieurs approches, nous concluons que SH3BP1 est requis pour inactiver Rac1 au front. Dans notre modèle nous proposons que RalB/exocyst règulerait la migration cellulaire en véhiculant au front de migration deux éléments majeurs de la signalisation de Rac1 : son complexe effecteur WRC, qui stimule la nucléation de filaments d’actine et son régulateur négatif SH3BP1, une GAP qui promeut l’inactivation et le cycle GDP/GTP de Rac1. En conclusion, ce travail fournit de nouvelles connexions moléculaires et fonctionnelles entre l’exocytose polarisée et la dynamique de l’actine au cours de la motilité cellulaire. / Very little is known about the coordination and the integration among the different regulators of the motility process. This work deals with two migration-regulatory pathways: the Rac1/WRC (Wave Regulatory Complex) pathway that drives the formation of the actin polymerization network at the front of motile cells; and RalB/exocyst pathway for which the molecular mechanisms underlying its implication in cell motility were still largely unknown at the beginning of this thesis. Rac1 and RalB are small GTPases of the Rho and Ras family, respectively. WRC and exocyst complexes are their direct effectors.In searching for connections between the exocyst and migration regulators, we found that two subunits of the exocyst, Exo70 and Sec6, interact directly in vitro with two subunits of the WRC, Abi and Cyfip, respectively. Moreover, we found that exocyst subunits can interact in vitro with the whole fully-assembled WRC complex. We also showed that these two complexes associate in vivo. Functionally, the exocyst was required for WRC complex positioning at the front of migrating cells.On the other hand, we also found that two other subunits of the exocyst, Sec8 and Exo84, interact with SH3BP1 (a RhoGAP protein) by two-hybrid assay and by co-immunoprecipitation. SH3BP1 localizes at the leading edge and this localization is dependent on the exocyst. Interestingly, in vivo, the RalB/exocyst/SH3BP1 pathway specifically targets Rac1, and not Cdc42. By a combination of approaches we concluded that SH3BP1 is required to inactivate Rac1 at the front.In our model we propose that RalB/exocyst regulates cell migration by driving to the leading edge two key signaling elements of the Rac1 pathway: its effector WRC, that stimulates actin filament nucleation, and its negative regulator SH3BP1, a GAP promoting Rac1 inactivation and GDP/GTP cycling. In conclusion, this work provides novel molecular and functional links between polarized exocytosis and actin dynamics during cell motility.
2

Determining the role of a small GTPase, Ral, and an endocytic factor, epsin, in Drosophila Notch signaling

Cho, Bomsoo 08 July 2013 (has links)
Cell-cell communication events are crucial to determine the fate of each cell during development. Notch signaling is involved in many different contexts in determining cell fate by mediating cell-cell communication. Furthermore, regulation of the Notch transduction pathway is critical for normal cellular function, which is implicated in various diseases, including cancers. At a certain developmental time point, intrinsic or extrinsic developmental cues induce biases in ligands and Notch receptors between neighboring cells. These initial biases are further amplified by various cellular factors which eventually dictate cell fates. In Drosophila, two Notch ligands, Delta and Serrate, trigger Notch receptor activation in nearby cells by virtue of numerous regulating factors. One important question in this area is how cells become Notch signal sending or receiving cells for cell fate decisions. I show evidence about a distinct mechanism for biasing the direction of Notch signaling that depends on a small GTPase, Ral, during Drosophila photoreceptor cell development. Investigations described here indicate that Fz signaling up-regulates Ral transcription in a signal sending fate cell, the R3 precursor, and Ral represses ligand-independent activation of Notch in the R3 precursor. This event ensures R3 to become a signaler and contributes to asymmetric Notch activation in the neighboring cell, R4. Ral is a small Ras-like GTPase that regulates membrane trafficking and signaling. Here, possible Ral effector pathways that are important for Notch regulation will be proposed. To trigger Notch activation in adjacent cells, Notch ligand endocytosis by the signaling cells is necessary. Recently, it was suggested that control of membrane trafficking is important not only for ligand signaling, but also for Notch receptor activation. Furthermore, Notch receptor trafficking regulates critical cellular functions, including proliferation, which is implicated in tumors. Therefore, another important question in Notch signaling is about the role of membrane trafficking in regulation of the Notch transduction pathway. Drosophila endocytic epsin, Liquid facets [Lqf], is a key component necessary for ligand endocytosis, thereby triggering Notch activation in adjacent cells. However, its function in signal receiving cells for Notch activation has not been studied. In this dissertation, I provide evidence that epsin is also required in signal receiving cells for Notch activation in developmental contexts. Furthermore, genetic and molecular evidence suggests that epsin regulates Notch receptor trafficking via Rab5-mediated endosomal sorting pathway for Notch activation. These studies support the idea that Notch activation at the plasma membrane is not the only way to transduce Notch signaling, but the Notch receptor must enter through an epsin-mediated endocytic pathway into subcellular compartments to be activated, at least in some contexts. / text
3

Ral GTPases regulate biogenesis of cell polarity

Hazelett, C. Clayton 01 May 2012 (has links)
Cell polarity is the asymmetric distribution of organelles that almost all cells use to separate individual processes and perform complex functions. Although the manner in which cells are polarized is very diverse, the processes necessary to assume polarized phenotypes are similar in many cell types. Epithelial cell polarization is of particular importance, as these cells serve form linings of organs and act as barriers distinguishing different compartments. Furthermore, loss of epithelial polarization occurs in some disease states and may result in cell invasion through underlying matrix. During initial polarization, vesicle trafficking is indispensible for assembly of structures, including apical junctional complex formation. Trafficking of new membrane and associated proteins to leading edges is also necessary for cell migration. RalA and RalB are members of the Ras superfamily of GTPases and have been implicated in several processes, including vesicle trafficking. Only 5 Ral effectors have been identified, two of which are members of the Exocyst complex, a hetero-octameric complex also involved with vesicle trafficking. I hypothesized that Ral GTPases were necessary for several aspects of cell polarization, and that they engage the Exocyst complex to mediate these processes. Initial investigation of tight junction assembly found that both RalA and RalB antagonistically affect paracellular permeability. Knockdown of RalA and RalB resulted in decreased and increased incorporation of components into assembling tight junctions, respectively. Furthermore, both RalA and RalB engaged the Exocyst in order to mediate tight junction assembly. I next examined the role of RalA-Sec5 and RalA-Exo84 interactions during tumor cell migration and invasion. Both interactions were necessary for invasion and single cell migration, although disruption of each interaction affected different aspects of migration. Furthermore, significant differences in cytoskeleton organization occurred in response to disruption of RalA-Sec5 and RalA-Exo84 interactions. Finally, I investigated the effects of RalA and RalB knockdown on growth of primary cilia and cyst formation. RalA decreased primary cilia growth and reduced average cilia length, while RalB increased cilia length. Knockdown of RalA and RalB also affected lumen formation during cystogenesis, as RalA knockdown prevented lumen formation and RalB knockdown caused formation of multiple lumens. Taken together, data presented here show that Ral engages the Exocyst to mediate distinct processes during tight junction assembly and cell migration, and implicates Ral GTPases in several different aspects of cell polarity.
4

Control of Secondary Granule Release in Neutrophils by Ral GTPase

Chen, Xiaojing 07 May 2011 (has links)
Neutrophil (PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocyto-sis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, I found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules, but not primary or tertiary granules, and caused dy-sregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, while chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Over-expression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, I found that Ral, which was associatedwith the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation. Blockage of cell endocytosis appeared to inhibit Ral transloca-tion intracellularly. In conclusion, these results demonstrate that Ral is a critical regulator in PMN that specifically controls secondary granule release during PMN response to chemoattrac-tant stimulation.
5

The NDR1 Kinase, a New Player in Oncogenic Signalling of Ral GTPases, Functions as a Linchpin Between Cancer Cell Survival and Death / La kinase NDR1, un nouvel acteur de la signalisation des RalGTases, fonctionne comme pivot entre la survie et la mort des cellules cancéreuses

Bettoun, Audrey 29 September 2015 (has links)
Des mutations du gène Ras jouent un rôle essentiel dans le développement tumoral. Les GTPases Ral , RalA et RalB, sont des effecteurs proximaux de l’oncogène Ras. RalA permet la croissance en absence de substrat et RalB est nécessaire à l'autophagie et à la résistance à l'apoptose des cellules cancéreuses. Cette thèse a pour objectif de clarifier les mécanismes moléculaires de la signalisation Ral impliqués dans l’oncogenèse dépendante des protéines Ras.Des criblages par double hydride ont été effectués par notre équipe et un interactome de Ral a été établi. Ce criblage a montré une interaction entre des protéines de la signalisation Ral et la protéine NDR1, une kinase pro-apoptotique appartenant à la voie " suppresseur de tumeur" Hippo. Le Projet 1 montre la régulation de NDR1 par la voie RalA-Exocyste- MAP4K4 en réponse au stress osmotique, oxydatif ou au traitement par le TNF-α. Dans cette voie, la kinase MAP4K4, un effecteur de RalA, via le complexe exocyste active directement NDR1. En outre, nous avons montré que la voie RalA-MAP4K4-NDR1 était nécessaire à l'apoptose déclenchée par le TNF-α ou par la surexpression de RASSF1A, suppresseur de tumeur appartenant à la voie Hippo. Nous avons donc montré que RalA a un rôle pro-apoptotique inattendue qui agit via la kinase NDR1, en plus de son rôle connu de proto-oncogène en aval de Ras.Le projet 2 montre que la protéine kinase NDR1 est un régulateur de l'autophagie. Des criblages par double hydride ont été effectués par notre équipe avec NDR1 comme appât et ont permis de montrer une interaction entre Beclin 1, une protéine majeure de l’autophagie, et NDR1. Nous avons montré que NDR1 était nécessaire à l'autophagie et à la formation des autophagosomes chez l'humain et la Drosophile. De plus, NDR1 est nécessaire à la formation du complexe Exo84 de l'exocyste, Beclin1 et RalB nécessaire à l'initiation de l'autophagie. Nous montrons également que RalB régule l'état d'activation de NDR 1 après induction de l'autophagie. En effet, en absence de RalB, nous avons observé une hyper - activation de NDR1 menant les cellules vers l'apoptose. Ainsi nous avons montré que NDR1 joue le rôle d'interrupteur favorisant l'autophagie ou favorisant l'apoptose suivant son état d'activation.Le projet 3 étudie l'implication de la voie RalGTPases-NDR1 dans l'oncogenèse dépendante de Ras et dissèque par quels mécanismes NDR1 y contribue. / Constitutive Ras signalling is one of the most frequent oncogenic event in human cancers. Thus, it is imperative to identify new therapeutic options targeting downstream effectors of Ras signalling. Ras-like GTPases RalA and RalB are proximal effectors of oncogenic Ras. RalA was reported to support anchorage independent proliferation and RalB regulates autophagy and inhibits apoptosis of cancer cells. Ral proteins execute these functions via several direct effectors as the exocyst, an octameric complex originally identified as regulator of vesicles trafficking. The global goal of this PhD was to better decipher the molecular mechanisms underlying the functions of Ral GTPases in oncogenesis.To extend the Ral interactome, i.e. the protein-protein interaction network centered on Ral, we performed yeast-two hybrid screenings which led to the identification of the NDR1 kinase, belonging to the tumor suppressor Hippo pathway. NDR1 functions in oncogenesis were investigated in the context of three projects.In Project 1, we showed that NDR1-dependent apoptosis is regulated by a RalA/Exocyst/MAP4K4/NDR1 cascade. We reported that under osmotic or oxidative stresses or TNF-α treatment, the Ste20-like MAP4K4 kinase, an effector of RalA via the exocyst complex, directly activates NDR1. Moreover, we found that TNF-α treatment or overexpression of the tumor suppressor RASSF1A, which belongs to the Hippo pathway, leads to apoptosis through this RalA/Exocyst/MAP4K4/NDR1 pathway. This novel and unexpected pro-apoptotic role of RalA suggests that the RalA GTPase can positively signal in tumor suppressor pathways via the kinase NDR1, in addition to its proto-oncogenic role downstream of Ras. In Project 2, we described the NDR1 protein kinase as a conserved regulator of autophagy. Using NDR1 as bait in yeast two hybrid screens, we fished Beclin1, a key regulator of autophagy, and we validated the existence of a direct biochemical NDR1-Beclin1 interaction. We showed that NDR1promotes autophagosome formation in human cells and Drosophila larvae. Furthermore, we observed that NDR1 supports the interaction of the exocyst component Exo84 with Beclin1 and RalB, which is required to initiate autophagosome formation. Very interestingly, under prolonged autophagy, RalB depletion triggers hyperactivation of NDR1 resulting in NDR1-dependent apoptosis. Thus, it appears that the NDR1 kinase could act as a switch between autophagy (=survival) or apoptosis (=death), under the control of RalB. In Project 3, we addressed the role of the newly identified RalGTPases-NDR1axis in Ras - induced oncogenesis and tumorigenesis.
6

Lighting up Invasion with Optogenetics : RalB Mobilizes the WRC Complex Downstream Ras / Allumer une invasion par optogénétique : RalB mobilise les complexes WRC en aval du Ras

Zago, Giulia 24 September 2018 (has links)
La formation des métastases est un processus multi étapes à travers lequel les cellules cancéreuses se détachent de la tumeur primaire pour envahir à distance dans un site secondaire. L’acquisition de capacités migratoires et invasives des cellules tumorales est cruciale dans la cascade métastatique. L'activation mutationnelle des protéines Ras favorise l'oncogenèse en perturbant une multitude de molécules et de voies qui sont impliquées dans la régulation de plusieurs processus, y compris l'invasion cellulaire et la motilité. Les petites Rho GTPases (Rac1, Cdc42 et RhoA)jouent un rôle central en contrôlant la migration cellulaire via l'assemblage des fibres d'actine, la contractilité de l'actomyosine et des microtubules.Rac1 stimule la motilité de type mésenchymateuse en favorisant la formation de lamellipodes via la formation du complexe régulateur Wave(WRC), un promoteur clé de la polymérisation de l'actine. Les protéines Ral,une autre famille de petites GTPases agissant en aval de Ras, a récemment été impliquée dans la régulation de la migration cellulaire. En particulier,RalB joue un rôle essentiel dans la motilité cellulaire en mobilisant le complexe Exocyst, son principal effecteur. Durant mon projet de thèse,nous avons investigué les mécanismes moléculaires qui contrôlent la motilité cellulaire et l'invasion en aval de la voie oncogénique Ras via le complexe RalB / Exocyst.Dans la première partie de ce manuscrit, nous avons identifié et caractérisé que le complexe WRC est à la fois un nouveau partenaire et mais aussi acteur du complexe Exocyst. En outre, nous démontrons que le complexe Exocyst dirige le complexe WRC à l’extrémité des cellules4mobiles. Cette hypothèse a été caractérisée dans la deuxième partie du manuscrit. En effet, en utilisant la technique d’optogénétique nous avonsmis en évidence le mécanisme moléculaire impliqué dans l'invasion.L’activation de RalB par Ras via les facteurs d'échange Rgl1 et Rgl2,mobilise le complexe Exocyst qui recrute ainsi le complexe WRC à l’extrémité des cellules. Cette cascade d’activation favorise la formation de protrusions, la migration et l'invasion. De manière surprenante, nous montrons que la GTPase Rac1, considérée comme la GTPase clée dans la formation de protrusions cellulaires, n'est pas impliquée dans ce processus.Enfin, nous avons analysé le niveau des protéines Ral dans une cohorte de patientes atteintes de cancer du sein. Nos résultats montrent pour la première fois une accumulation de la protéine RalB dans les compartemets invasif et métastatique suggérant un rôle potentiel de RalB dans l'invasion et la propagation métastatique des cancers du sein humain. Pour conclure,notre travail met en évidence un rôle crucial de la voie Ral, souvent sousestimée,dans le contexte de l'invasion cancéreuse. / Metastasis is a multistep process by which cancer cells migrate awayfrom the primary neoplastic mass to give rise to secondary tumors at distantsites. Thus, the acquisition of motility and invasive traits by tumor cells is acrucial step for metastasis to occur. Mutational activation of Ras proteinspromotes oncogenesis by disturbing a multitude of molecules andpathways that participate to the regulation of several processes includingalso cell invasion and motility. Among them a central role is played by Rhosmall GTPases (Rac1, Cdc42 and RhoA) which control cell migrationthrough their actions on actin assembly, actomyosin contractility andmicrotubules. Rac1 drives mesenchymal-type motility by promotinglamellipodia formation via the Wave Regulator Complex (WRC), a keypromoter of actin polymerization. Another family of small GTPases that actdownstream Ras, the Ral proteins, has been recently involved in theregulation of cell migration. RalB, through the mobilization of its maineffector the Exocyst complex, was shown to play an essential role in cellmotility. In this work of thesis, we investigated the molecular mechanismsthrough which RalB/Exocyst pathway controls cell motility and invasiondownstream oncogenic Ras.In the first part of this manuscript we describe the identification andcharacterization of the WRC complex as a novel interactor of the Exocyst.Furthermore, we provide evidences for Exocyst to be involved in drivingthe WRC to the leading edge of motile cells. This hypothesis, was finallydemonstrated in the second part of the manuscript. We were able to definethe mechanisms underlying the function of RalB in invasion by exploitingan optogenetic approach. We found that RalB, activated by Ras via the2Rgl1 and Rgl2 exchange factors, mobilizes the Exocyst complex whichrecruits the Wave Regulatory Complex (WRC) at cell edge, promotingprotrusions, migration and invasion. Even more, we show that the Rac1GTPase, usually considered the master of cell protrusions, is not involvedin this process. Finally, we analyzed Ral proteins expression in a cohort ofbreast cancer samples, pointing out for the first time an accumulation ofRalB in the invasive and metastasis compartments, suggesting a role ofRalB in invasiveness and metastatic spread of human breast cancers. Takentogether our work contribute to light up the role of the underestimated Ralpathway in the context of cancer invasion.
7

Jahresbericht der Research Academy Leipzig 2010

Schlegel, Martin 22 October 2020 (has links)
Jahresbericht der Research Academy Leipzig 2010:Research Academy Leipzig – Jahresbericht 2010 -Vorwort – Research Academy fit für die Evaluierung 7 -Die Arbeit der Doktorandenvertretung 2010 8 -Fächerübergreifende Qualifizierung für Doktorandinnen und Doktoranden der Universität -Vernetzung und Kooperation – die Öffentlichkeitsarbeit -Über die Kompetenzschule ELSYS -Gleichstellungsmaßnahmen -Graduiertenzentrum Mathematik / Informatik und Naturwissenschaften -Die Arbeit des Graduiertenzentrums -Graduiertenschule „Leipzig School of Natural Sciences – Building with Molecules and Nano-objects“ (BuildMoNa) -Deutsch-Französisches Doktorandenkollegium (DFDK) / Collège Doctoral Franco-Allemand (CDFA) „Statistische Physik komplexer Systeme“ -Graduiertenkolleg „Analysis, Geometrie und ihre Verbindungen zu den Naturwissenschaften“ -International Max Planck Research School „Mathematics in the Sciences“ -International Research Training Group (IRTG) “Diffusion in Porous Materials” -Internationales Promotionsprogramm (IPP) „Forschung in Grenzgebieten der Chemie” -Graduiertenzentrum Lebenswissenschaften -Die Arbeit des Graduiertenzentrums -Internationales Promotions programm (IPP) „Von der Signal verarbeitung zum Verhalten“ -Graduiertenkolleg „Interdisziplinäre Ansätze in den Neurowissenschaften“ (InterNeuro) -Graduiertenkolleg „Funktion von Aufmerksamkeit bei kognitiven Prozessen“ MD / PhD-Programm der Universität Leipzig -International Max Planck Research School “The Leipzig School of Human Origins” Integriertes Graduiertenkolleg (IGK) „Proteinwissenschaften“ -International Max Planck Research School “Neuroscience of Communication: Function, Structure, and Plasticity” (NeuroCom) -Integriertes Graduiertenkolleg „Matrixengineering“ -Graduiertenzentrum Geistes- und Sozialwissenschaften -Die Arbeit des Graduiertenzentrums -VIII. Internationalen Sommerschule „Transnationale Akteure – Akteure der Transnationalisierung“ -Doktorandenvertreter organisieren Workshop „Publikationsstrategien“ Internationales Promotionsprogramm (IPP) „Transnationalisierung und Regionalisierung vom 18. Jahrhundert bis zur Gegenwart“ -Graduiertenkolleg „Bruchzonen der Globalisierung“ -Deutsch als Fremdsprache / Transcultural German Studies -„Kultureller Austausch – Altertumswissenschaftliche, historische und ethnologische Perspektiven“ -Graduiertenkolleg „Religiöser Nonkonformismus und kulturelle Dynamik“ -Volkswirtschaftliches Doktorandenprogramm Dresden-Halle-Leipzig (Central-German Doctoral Program Economics, CGDE) -Kontakte -Finanzen der Graduiertenzentren 2010 -Überblick Doktorandenzahlen
8

Control of Secondary Granule Release in Neutrophils by Ral GTPase

CHEN, XIAOJING 07 May 2011 (has links)
Neutrophil (PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocyto-sis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, I found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules, but not primary or tertiary granules, and caused dy-sregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, while chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Over-expression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, I found that Ral, which was associatedwith the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation. Blockage of cell endocytosis appeared to inhibit Ral transloca-tion intracellularly. In conclusion, these results demonstrate that Ral is a critical regulator in PMN that specifically controls secondary granule release during PMN response to chemoattrac-tant stimulation.
9

The role of electrostatic fields in Ras-effector binding and function

Walker, David Matthew 07 July 2014 (has links)
The organization of two or more biological macromolecules into a functioning assembly is critical for many biological functions to occur. This phenomenon is the result of subtle interplay between complimentary structural and electrostatic factors. While a growing protein data bank of solved protein structures provides experimental evidence for studying the structural factors that stabilize protein-protein interface, there has been little advance in experimental determination of the electrostatic contributions. This lack of experimental investigation into protein electrostatics results in an inability to describe or predict how protein-protein complexes are arranged and stabilized. This problem is addressed in this dissertation by use of vibrational Stark effect (VSE) spectroscopy in which the spectral transitions of a vibrational probe are directly related to the strength and direction of the electric fields in the vicinity of the probe. The work presented here details an approach using VSE spectroscopy coupled with molecular dynamics simulation (MD) to interpret the role that electrostatics play in organizing the signaling protein Ras' interactions with its downstream effectors Raf and Ral guanosine dissociation simulator (RalGDS). Each chapter describes a specific set of experiments and MD simulations designed to understand the nature of protein-protein interactions. In Chapter 3, changes in the absorption energy of the nitrile probe at nine positions along the Ras-Ral interface were compared to results of a previous study examining this interface with Ral-based probes, and a pattern of low electrostatic field in the core of the interface surrounded by a ring of high electrostatic field around the perimeter of the interface was found. The areas of conserved Stark shifts are used to help describe electrostatic factors that stabilize the Ras-Ral interface. In Chapter 4, VSE is used to describe an electrostatic origin to the binding tilt between complexes formed between Ras and its two effectors Raf and Ral. There are three regions of conserved Stark effect shifts upon docking with WT Ras between the two effectors, indicating that the docked complexes conserve electrostatic fields, resulting in different binding orientation of otherwise structurally similar proteins. Chapter 5 details the use of MD simulation in correlation with VSE data for 18 mutants of the Ras at the oncogenic position 61 site. The combination of experimental and simulations support the hypothesis that position 61 on Ras is used to coordinate an active site water molecule during native guanosine triphosphate (GTP) hydrolysis. / text
10

Connexions entre les voies ral et rac dans le contrôle de la migration cellulaire

Sadou, Amel 14 March 2012 (has links) (PDF)
Le mode de coordination parmi les différentes molécules qui régulent la migration reste très peu connu. Ce travail traite de deux voies de transduction régulant la migration: la voie Rac1/WRC (Wave Regulatory Complex) qui contrôle la formation du réseau d'actine au front des cellules migrantes, et la voie RalB/exocyst, dont les mécanismes moléculaires de son implication dans la motilité cellulaire étaient inconnus au début de cette thèse. Rac1 et RalB sont des petites protéines G des familles Rho et Ras, respectivement. Les complexes WRC et exocyst sont leurs effecteurs directs.Au cours de la recherche de connexions entre l'exocyst et des régulateurs de la migration, nous avons trouvé que deux sous-unités de l'exocyst, Exo70 et Sec6, interagissent directement in vitro avec Abi et Cyfip, respectivement, deux sous unités du WRC. De plus, nous avons trouvé que les sous-unités de l'exocyst peuvent interagir in vitro avec le WRC entier. Nous avons également montré que ces deux complexes s'associent in vivo. Sur le plan fonctionnel, l'exocyst est requis pour le positionnement du complexe WRC au front des cellules migrantes. D'autre part, nous avons également trouvé que deux autres sous- unités de l'exocyst Sec8 et Exo84, interagissent avec SH3BP1 (une RhoGAP) en double hybride et en co-immunoprécipitation. SH3BP1 se localise au front des cellules migrantes, et cette localisation dépend de l'exocyst. De façon intéressante, in vivo, la voie RalB/exocyst/SH3BP1 cible spécifiquement Rac1, et non Cdc42. Grâce à plusieurs approches, nous concluons que SH3BP1 est requis pour inactiver Rac1 au front. Dans notre modèle nous proposons que RalB/exocyst règulerait la migration cellulaire en véhiculant au front de migration deux éléments majeurs de la signalisation de Rac1 : son complexe effecteur WRC, qui stimule la nucléation de filaments d'actine et son régulateur négatif SH3BP1, une GAP qui promeut l'inactivation et le cycle GDP/GTP de Rac1. En conclusion, ce travail fournit de nouvelles connexions moléculaires et fonctionnelles entre l'exocytose polarisée et la dynamique de l'actine au cours de la motilité cellulaire.

Page generated in 0.051 seconds