• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 630
  • 272
  • 105
  • 84
  • 29
  • 27
  • 20
  • 15
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1461
  • 1461
  • 272
  • 150
  • 140
  • 139
  • 135
  • 131
  • 128
  • 114
  • 113
  • 104
  • 97
  • 92
  • 88
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance

Edwards, Howell G.M., Munshi, Tasnim, Anstis, M. January 2005 (has links)
No / The FT Raman spectrum of caffeine was analysed along with that of its demethylated analogues, theobromine and theophylline. The similar but not identical structures of these three compounds allowed a more detailed assignment of the Raman bands. Noticeable differences in the Raman spectra of these compounds were apparent and key marker bands have been identified for the spectroscopic identification of these three compounds.
402

FT-Raman Spectroscopic Study of Calcium-Rich and Magnesium-Rich Carbonate Minerals

Munshi, Tasnim, Edwards, Howell G.M., Jenlicka, J., Jorge Villar, Susana E. January 2005 (has links)
No / Calcium and magnesium carbonates are important minerals found in sedimentary environments. Although sandstones are the most common rock colonized by endolith organisms, the production of calcium and magnesium carbonates is important in survival strategies of organisms and as a source for the removal of oxalate ions. Extremophile organisms in some situations may convert or destroy carbonates of calcium and magnesium, which gives important information about the conditions under which these organisms can survive. The identification on the surface of Mars of 'White Rock' formations, in Juventae Chasma or Sabaea Terra, as possibly carbonate rocks makes the study of these minerals a prerequisite of remote Martian exploration. Here, we show the protocol for the identification by Raman spectroscopy of different calcium and magnesium carbonates and we present a database of relevance in the search for life, extinct or extant, on Mars; this will be useful for the assessment of data obtained from remote, miniaturized Raman spectrometers now proposed for Mars exploration.
403

Morphological biosignatures from relict fossilised sedimentary geological specimens: a Raman spectroscopic study

Edwards, Howell G.M., Jorge Villar, Susana E., Pullan, D., Hargreaves, Michael D., Hofmann, B.A., Westall, F. January 2007 (has links)
No / Morphological biosignatures (features related to life) and associated terrestrial sedimentary structures that provide possible sampling targets for the remote astrobiological exploration of planets have been analysed using Raman spectroscopic techniques. The spectral data from a suite of samples comprising crypto-chasmoendoliths, preserved microbial filaments and relict sedimentary structures comprise a preliminary database for the establishment of key Raman biosignatures. This will form the basis for the evaluation of prototype miniaturised instrumentation for the proposed ESA ExoMars mission scheduled for 2013. The Raman spectral biosignatures of carotenoids and scytonemin, organic biomolecules characteristic of the cyanobacterial colonisation of geological matrices and biogeologically modified minerals are also identifiable in the sedimentary specimen materials. The results of this study demonstrate the basis of the molecular recognition of extinct and extant exobiology that will feed into the elemental structural analyses of morphological structures provided by associated SEM, XRD and laser-induced breakdown spectroscopy (LIBS) techniques on robotic analytical landers.
404

Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations

Jehlička, J., Edwards, Howell G.M., Nemec, I., Oren, A. January 2015 (has links)
No / Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here.
405

Screening of textiles for contraband drugs using portable Raman spectroscopy and chemometrics

Ali, Esam M.A., Edwards, Howell G.M. January 2014 (has links)
No / The impregnation of items of clothing with drugs of abuse that are then smuggled through airports and ports of entry is a growing problem for law enforcement. This work describes the application of portable Raman spectroscopic techniques for the analysis of a range of natural and artificial fibre items of clothing impregnated with drugs of abuse. Textile pieces were soaked with the solutions of the drugs then left overnight to dry prior to spectroscopic examination. The feasibility of detection of the characteristic Raman spectral bands in the presence of background matrix signals is demonstrated, even for dyed clothing. Definitive evidence for contamination of the items of clothing concerned can be acquired within 20-25 s, without any form of sample pre-treatment or extraction being necessary. The feasibility of automatic spectral recognition of such illicit materials by Raman spectroscopy has been investigated by searching a database stored on the spectrometer computer and the use of principal component analysis. Copyright (c) 2014 John Wiley & Sons, Ltd.
406

Raman spectroscopic analyses of preserved historical specimens of human hair attributed to Robert Stephenson and Sir Isaac Newton

Edwards, Howell G.M., Hassan, N.F., Wilson, Andrew S. 23 August 2004 (has links)
No / The Raman spectra of two historical specimens of human hair attributed to the engineer Robert Stephenson and scientist Sir Isaac Newton, preserved in private collections are reported. Comparisons are made with the Raman spectra of modern hair specimens and with hair from archaeological excavations. The hair spectra collected with a laser excitation of 785 nm are of a better quality than those collected using 1064 nm. The historical hair specimens are remarkably well-defined spectroscopically in terms of the amide I vibrational mode and the ν(SS), ascribed to a predominantly gauche–gauche–gauche CSSC conformation. The contrast with degraded hair specimens recovered from archaeological excavations is striking. The presence of a weak feature near 2590 cm−1 in the hair samples attributed to a ν(SH) vibration could be indicative of a reduction process operative on the CSSC cystine keratotic linkages and a possible origin of this is bacterial biodegradation identified histologically. This study demonstrates the molecular information available from non-destructive Raman spectroscopic analysis from single hair shafts or small bundles of fibres which complements information available from histological and destructive analytical techniques for rare biological specimens subjected to conservation or curation procedures in museums or private collections.
407

Towards an Understanding of the Interaction of Hair with the Depositional Environment

Wilson, Andrew S., Dixon, Ronald A., Edwards, Howell G.M., Farwell, Dennis W., Janaway, Robert C., Pollard, A. Mark, Tobin, Desmond J. January 2001 (has links)
No / There is developing interest in the analytical use of human hair from archaeological contexts in key research areas such as DNA, trace elemental and isotopic analyses. Other human tissues, especially bone, that have been used for trace element, isotopic and DNA analyses have had extensive study concerning their diagenesis, but this has not been done for hair. Consideration must be given to the complex interaction of hair with its buried environment, thereby laying a firm basis for the use of hair in future research. Since human hair is known to survive under a diverse range of environmental conditions, a pilot study has investigated the basic processes of hair degradation, using samples from different climatic zones and burial types. Variation in the degree of preservation of archaeological hair was characterized by light microscopy, electron microscopy, and FT-Raman spectroscopy, relating morphological change of the surface and internal structure of hair to its biochemical integrity. The results demonstrate a breakdown of cortical cell boundaries and disruption of the cuticular layering, coupled with infiltration of material from the burial matrix that suggests a progressive loss of cohesion that is in part due to microbiological activity. Medullated hair is shown to be more susceptible to physical breakdown by providing two routes for microbial and environmental attack. At the molecular level the proteinaceous component undergoes alteration, and the S-S cystine linkages, responsible for the strength and resilience of hair in living individuals, are lost.
408

The Degradation of Human Hair Studied by FT-Raman Spectroscopy

Edwards, Howell G.M., Farwell, Dennis W., Wilson, Andrew S. January 1998 (has links)
No
409

Modification and characterization of self-assembly systems: limposomes, lipid tubules and bolaamphiphile

Pan, Su 01 July 2000 (has links)
No description available.
410

Raman Chemometrics and Application to Enzyme Kinetics and Urinalysis

Fisher, Amanda Kaye 06 February 2018 (has links)
Raman spectroscopy records the inelastic scattering of photons originating from striking a sample with monochromatic light. Inelastic, or Raman, scattered photons shift in wavelength due to excitation of the vibrational modes of molecules struck by the incident light. The Raman scattered photons are representative of all of the covalent bonds contained within a sample. Raman spectra taken of biological systems such as proteins, bacterial colonies, and liquid waste, are difficult to interpret due to the complexity of their covalent bond landscape and mixtures of molecules in highly variable concentrations. Rather than deconstructing Raman spectra to attempt assignment of specific bonds and functional groups to wavenumber peaks, here we have developed a chemometric analysis pipeline for quantifying the similarities and differences among a set of Raman spectra. This quantification aids in both classification of samples, and in measuring how samples change over time. The chemometric approach for interpretation of Raman spectra was made freely available in a user-friendly format via a MATLAB add-on called the Raman Data Analysis (RDA) Toolbox. Demonstrations of the RDA Toolbox functionalities on Raman spectra taken of various common biological systems are included, such as determination of protein concentration and monitoring bacterial culture growth. The RDA Toolbox and Raman spectroscopy are also used to initiate research in novel areas. Fast and accurate evaluation of enzyme specific activity is required for engineering enzymes, and results of Raman assays, evaluated in the RDA Toolbox, are successfully correlated to absorbance activity assays of an enzyme WT and mutant library. Further development of this research could alleviate the bottleneck of screening mutant libraries in enzyme engineering projects. The Toolbox is then used in a distinctly different application for evaluating urine and spent dialysate samples from patients with end stage renal disease. Categorization between samples from healthy volunteers and patients is accomplished with close to 100% accuracy, and evidence indicating that Raman spectroscopy can serve as an early diagnostic tool for infections of the peritoneal membrane is presented. / PHD / Raman spectroscopy, unlike other forms of spectroscopy, provides a complete picture of the chemical make-up of a sample. However, Raman spectra of biological samples are very difficult to interpret due to the complex mixture of molecules in living systems. Rather than trying to discern what specific molecules are in a sample, we have developed a method for measuring the similarities and differences among a set of Raman spectra. These measurements help us classify samples and monitor how samples change over time. We made a MATLAB add-on called the Raman Data Analysis (RDA) Toolbox to automate our method for interpreting Raman spectra, and made it available online for anyone to download and use. Raman spectroscopy and the RDA Toolbox are used to measure enzyme reaction speed, and the results compare favorably with a traditional method for measuring enzyme reaction speed. The final part of this dissertation focuses on using Raman spectroscopy and the RDA Toolbox to evaluate the health of patients with end stage renal disease (ESRD) by scanning urine and spent dialysate samples to detect failing kidney function or the onset of infection.

Page generated in 0.0724 seconds