321 |
Distribution of juvenile salmonids and stream habitat relative to 15-year-old debris-flow deposits in the Oregon Coast RangeKirkby, Kristen-Marie S. 18 February 2013 (has links)
Debris flows, common disturbances in many mountainous areas, initially scour or bury stream habitats; however, debris flows deliver vast amounts of wood, boulders, and gravel that may ultimately form complex stream habitat to potentially support a diverse salmonid assemblage. The materials deposited by debris flows would otherwise be inaccessible to streams, and thus deposits may play an important role in creating and maintaining complex salmonid habitat over time. Despite the potential of deposits for increasing habitat complexity, most fish studies have focused on the destructive effects of debris flows and short-term recovery and re-colonization in scour zones. Debris-flows that occurred during the record-setting winter storms of 1996 in western Oregon, USA, provide an opportunity to study intermediate-term effects of debris-flow deposits on abundances and habitat for juvenile salmonids. In this setting, I surveyed salmonid abundance and habitat in three Oregon Coast Range streams that contained several debris-flow deposits from the 1996 storms. I explained fish abundance using hierarchical models, accounting for heterogeneous detection probabilities with repeated counts from multiple-pass snorkeling. The "best" hierarchical model of detection probability and abundance was selected (QAIC) from pool and snorkel-pass characteristics separately
for juvenile coho salmon (Oncorhynchus kisutch), age 0+ trout, and age 1+ trout (Oncorhynchus spp.) in each stream. Adding distance to the nearest 1996 debris-flow deposit (DDF) produced a significant drop-in-deviance for four of nine "best" models, including at least one in each stream and for each species/age-class. In these four models, salmonid abundance decreased with increasing distance from deposit. As a potential explanation, several pool habitat characteristics were correlated (Spearman's rank) with DDF. Results varied across streams, but generally, percent of substrate as bedrock was lower and boulder density and percent substrate as gravel were higher closer to deposits. Although repeat counts are increasingly used in hierarchical modeling of heterogeneous detection probabilities and abundance for other wildlife species, studies of fish often rely on uncalibrated, single-pass snorkel counts. When exploring the value of repeat counts, I found that juvenile salmonid abundance decreased with increasing distance from debris-flow deposits in more multiple-pass hierarchical models that accounted for heterogeneous detection probabilities than for single-pass models that did not. Thus, modeling heterogeneous detection probabilities with repeated snorkel counts may be beneficial in other situations, addressing limitations of uncalibrated indices without relying on methods such as electrofishing, which may be difficult or impossible for remote study areas, longer surveys, or sensitive species. My findings suggest that debris-flow deposits may influence salmonid abundances after 15 years, and support management of debris flow-prone hillslopes and low-order channels to deliver elements of stream habitat complexity. / Graduation date: 2013
|
322 |
Range Searching Data Structures with Cache LocalityHamilton, Christopher 17 March 2011 (has links)
This thesis focuses on range searching data structures, an elementary problem in computational
geometry with research spanning decades. These problems often involve very large data sets.
Processor speeds increase faster than memory speeds, thus the gap between the rate at which CPUs can
process data and the rate at which it can be retrieved is increasing. To bridge this gap, various
levels of cache are used. Since cache misses are costly, algorithms should be cache-friendly.
The input-output (I/O) model was the first model for constructing cache-efficient algorithms,
focusing on a two-level memory hierarchy. Algorithms for this model require manual tuning to
determine optimal values for hardware dependent parameters, and are only optimal at a single level
of a memory hierarchy. Cache-oblivious (CO) algorithms are built without knowledge of the hierarchy,
allowing them to be optimal across all levels at once.
There exist strong theoretical and practical results for I/O-efficient range searching. Recently,
the CO model has received attention, but range searching remains poorly understood. This thesis
explores data structures for CO range counting and reporting. It presents the first space and
worst-case query-time optimal approximate range counting structure for a family of related problems,
and associated O(N log N)-space query-optimal reporting structures. The approximate counting
structure is the first of its kind in internal memory, I/O and CO models. Researchers have been
trying to create linear-space query-optimal CO reporting structures. This thesis shows that for a
variety of problems, linear space is in fact impossible.
Heuristics are also used for building cache-friendly algorithms. Space-filling curves are
continuous functions mapping multi-dimensional sets into one-dimensional ones. They are used to
build search structures in the hopes that objects that were close in the original space remain close
in the resulting ordering. This results in queries incurring fewer page swaps when traversing the
structure. The Hilbert curve is notably good at this, but often imposes a space or time penalty.
This thesis introduces compact Hilbert indices, which remove the ineffiency inherent for input point
sets with bounding boxes smaller than their bounding hypercubes.
|
323 |
Electron and hole transport in GaN and InGaNEshghi, Hosein January 2000 (has links)
No description available.
|
324 |
Spatial and temporal patterns of herbaceous species at Middleback Station, South Australia / by Kym P. NicolsonNicolson, K (Kym) January 1985 (has links)
Bibliography: p. [i.e. leaves] 267-277 / 277 p. [i.e. leaves], [4] leaves of plates : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, 1986
|
325 |
Modeling Fecal Bacteria in Oregon Coastal Streams Using Spatially Explicit Watershed CharacteristicsPettus, Paul Bryce 16 December 2013 (has links)
Pathogens, such as Escherichia coli and fecal coliforms, are causing the majority of water quality impairments in U.S., making up ~87% of this grouping's violations. Predicting and characterizing source, transport processes, and microbial survival rates is extremely challenging, due to the dynamic nature of each of these components. This research built upon current analytical methods that are used as exploratory tools to predict pathogen indicator counts across regional scales. Using a series of non-parametric methodologies, with spatially explicit predictors, 6657 samples from non-estuarine lotic streams were analyzed to make generalized predictions of regional water quality. 532 frequently sampled sites in the Oregon Coast Range Ecoregion, were parsed down to 93 pathogen sampling sites in effect to control for spatial and temporal biases. This generalized model was able to provide credible results in assessing regional water quality, using spatial techniques, and applying them to infrequently or unmonitored catchments. This model's 56.5% explanation of variation, was comparable to other researchers' regional assessments. This research confirmed linkages to land uses related to anthropogenic activities such as animal operations and agriculture, and general riparian conditions.
|
326 |
Space-Based Flight Termination System Incorporating GPS Telecommand LinkAlves, Daniel F., Jr. 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper will investigate the areas which must be addressed to implement a truly integrated Range instrumentation system on a GPS-based Range, using a patented L-Band commanding scheme. Hardware issues will be highlighted as well the issues to be addressed in changing from an audio tone-frequency modulated command system to a digital system incorporating encryption and spread spectrum. Some thoughts addressing costs and schedule to incorporate this approach into the architecture of the U. S. Air Force Range Standardization and Automation (RSA) architecture, as a candidate GPS-based Range are also presented, as well as a discussion of the benefits to be accrued over the existing system, if this approach were adopted.
|
327 |
Calcium-oxalate in sites of contrasting nutrient status in the Coast Range of OregonDauer, Jenny M. 16 March 2012 (has links)
Calcium (Ca) is an essential macronutrient that is increasingly recognized as a biogeochemical factor that influences ecosystem structure and function. Progress in understanding the sustainability of ecosystem Ca supply has been hampered by a lack of information on the various forms and pools of Ca in forest ecosystems. In particular, few studies have investigated the role of Ca-oxalate (Ca-ox), a ubiquitous and sparingly soluble biomineral formed by plants and fungi, on Ca cycling. I investigated Ca-ox pools in two young Douglas-fir forests in the Oregon Coast Range, and found that Ca-ox comprised 4 to 18% of total ecosystem Ca in high- and low-Ca sites, respectively, with roughly even distribution in vegetation, detritus and mineral soil to 1 m depth. The proportion of ecosystem Ca existing as Ca-ox varied by ecosystem compartment but was highest in needle litterfall, foliage and branches. Calcium-ox could be a large amount of Ca in mineral soil; across nine sites comprising a local soil Ca gradient, we found as much as 20% of available Ca in 0 - 10 cm depth mineral soil occurs as Ca-ox. Ca-ox was the dominant form of Ca returned from plants to soil, but disappeared as rapidly as bulk Ca from decomposing litter, suggesting an important pathway for Ca recycling. In mineral soil, Ca-ox was a larger portion of total available Ca in the low-Ca site, which had lower Ca-ox concentrations overall, suggesting that Ca-ox has limited potential to buffer against Ca depletion in forests where Ca is in shortest supply. I investigated foliar chemistry as a method for diagnosis of nutrient deficiencies in high and low-Ca sites where Ca varied inversely with soil nitrogen (N), and which had received fertilization with urea (for nitrogen, N), lime, and calcium chloride three years prior. Foliar vector diagrams suggested N limitation at the low-N site and N sufficiency at the high-N site, but did not suggest Ca deficiency at either site after urea, lime and Ca-chloride fertilization. The high-Ca site displayed 20-60 times higher concentrations of foliar Ca-oxalate than the low-Ca site, although this was unaffected by fertilization. Soil nitrification responded to both N and lime fertilization at both sites, suggesting that fertilization with N may stimulate nitrification that could accelerate soil Ca loss. I also investigated how Ca-ox may influence cation tracers such as Ca and strontium (Sr) ratios (i.e., Ca/Sr) and Ca-isotopes (⁴⁴Ca/⁴⁰Ca), which are used to identify sources and pathways of Ca cycling in ecosystem studies. Laboratory synthesis of Ca-ox crystals exhibited preference for Ca over Sr, and for ⁴⁰Ca over ⁴⁴Ca. In the field, discrimination between Ca and Sr was detected in bulk plant tissues due to Ca-ox accumulation, suggesting that Ca-ox accumulation related to tree Ca supply status could influence interpretations of Ca/Sr as a tracer of Ca cycling. I also found that standard methods of soil exchangeable Ca extraction could dissolve Ca-ox crystals and potentially contribute an additional 52% to standard measurements of exchangeable-Ca pools in low-Ca sites, thus complicating long-standing interpretations of available soil Ca pools and dynamics in many studies. Results of this work show overall that Ca-ox is found in large quantities in plants, detritus, and mineral soil in forest ecosystems, and is a more dynamic component of ecosystem Ca cycling than previously recognized. / Graduation date: 2012
|
328 |
Mycorrhizal fungi and their relationship to plant succession in subalpine habitatsCazares, Efren 15 January 1992 (has links)
Graduation date: 1992
|
329 |
Range finding in passive wireless sensor networks using power-optimized waveformsTrotter, Matthew 14 November 2011 (has links)
Passive wireless sensor networks (WSNs) are quickly becoming popular for many applications such as article tracking, position location, temperature sensing, and passive data storage. Passive tags and sensors are unique in that they collect their electrical energy by harvesting it from the ambient environment. Tags with charge pumps collect their energy from the signal they receive from the transmitting source. The efficiency of converting the received signal to DC power is greatly enhanced using a power-optimized waveform (POW).
Measurements in the first part of this dissertation show that a POW can provide efficiency gains of up to 12 dB compared to a sine-wave input. Tracking the real-time location of these passive tags is a specialized feature used in some applications such as animal tracking. A passive WSN that uses POWs for the improvement of energy-harvesting may also estimate the range to a tag by measuring the time delay of propagation from the transmitter to the tag and back to the transmitter. The maximum-likelihood (ML) estimator is used for estimating this time delay, which simplifies to taking the cross-correlation of the received signal with the transmitted signal.
This research characterizes key aspects of performing range estimations in passive WSNs using POWs. The shape of the POW has a directly-measurable effect on ranging performance. Measurements and simulations show that the RMS bandwidth of the waveform has an inversely proportional relationship to the uncertainty of a range measurement. The clutter of an environment greatly affects the uncertainty and bias exhibited by a range estimator. Random frequency-selective environments with heavy clutter are shown to produce estimation uncertainties more than 20 dB higher than the theoretical lower bound. Estimation in random frequency-flat environments is well-behaved and fits the theory quite nicely. Nonlinear circuits such as the charge pump distort the POW during reflection, which biases the range estimations. This research derives an empirical model for predicting the estimation bias for Dickson charge pumps and verifies it with simulations and measurements.
|
330 |
Fundamental studies of interferences in ICP-MSRowley, Linda Kathleen January 2000 (has links)
Methods of temperature measurement by mass spectrometry have been critically reviewed. It was concluded that the most appropriate method depended critically on the availability of fundamental data, hence a database of fundamental spectroscopic constants, for diatomic ions which cause interferences in ICP-MS, was compiled. The equilibration temperature, calculated using the different methods and using various diatomic ions as the thermometric probes, was between c.a. 400 - 10,000 K in the central channel, and between c.a. 600 - 16,000 K when the plasma was moved 1.8 mm off-centre. The wide range in temperature reflected the range of temperature measurement methods and uncertainty in the fundamental data. Optical studies using a fibre optic connected to a monochromator were performed in order to investigate the presence of interferences both in the plasma and the interface region of the ICP-MS, and the influence of a shielded torch on these interferences. It was possible to determine the presence of some species in the plasma, such as the strongly bound metal oxides, however, no species other than OH were detected in the interface region of the ICP-MS. The OH rotational temperature within the interface region of the ICP-MS was calculated to be between 2,000 - 4,000 K. The effect of sampling depth, operating power, radial position and solvent loading, with and without the shielded torch, on the dissociation temperature of a variety of polyatomic interferences was investigated. These calculated temperatures were then used to elucidate the site of formation for different polyatomic interferences. Results confirmed that strongly bound ions such as MO+ were formed in the plasma, whereas weakly bound ions such as ArO+ were formed in the interface region due to gross deviation of the calculated temperatures from those expected for a system in thermal equilibrium.
|
Page generated in 0.0529 seconds