• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 15
  • 11
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[en] MOBILE ROBOT SIMULTANEOUS LOCALIZATION AND MAPPING USING DP-SLAM WITH A SINGLE LASER RANGE FINDER / [pt] MAPEAMENTO E LOCALIZAÇÃO SIMULTÂNEA DE ROBÔS MÓVEIS USANDO DP-SLAM E UM ÚNICO MEDIDOR LASER POR VARREDURA

LUIS ERNESTO YNOQUIO HERRERA 31 July 2018 (has links)
[pt] SLAM (Mapeamento e Localização Simultânea) é uma das áreas mais pesquisadas na Robótica móvel. Trata-se do problema, num robô móvel, de construir um mapa sem conhecimento prévio do ambiente e ao mesmo tempo manter a sua localização nele. Embora a tecnologia ofereça sensores cada vez mais precisos, pequenos erros na medição são acumulados comprometendo a precisão na localização, sendo estes evidentes quando o robô retorna a uma posição inicial depois de percorrer um longo caminho. Assim, para melhoria do desempenho do SLAM é necessário representar a sua formulação usando teoria das probabilidades. O SLAM com Filtro Extendido de Kalman (EKF-SLAM) é uma solução básica, e apesar de suas limitações é a técnica mais popular. O Fast SLAM, por outro lado, resolve algumas limitações do EKF-SLAM usando uma instância do filtro de partículas conhecida como Rao-Blackwellized. Outra solução bem sucedida é o DP-SLAM, o qual usa uma representação do mapa em forma de grade de ocupação, com um algoritmo hierárquico que constrói mapas 2D bastante precisos. Todos estes algoritmos usam informação de dois tipos de sensores: odômetros e sensores de distância. O Laser Range Finder (LRF) é um medidor laser de distância por varredura, e pela sua precisão é bastante usado na correção do erro em odômetros. Este trabalho apresenta uma detalhada implementação destas três soluções para o SLAM, focalizado em ambientes fechados e estruturados. Apresenta-se a construção de mapas 2D e 3D em terrenos planos tais como em aplicações típicas de ambientes fechados. A representação dos mapas 2D é feita na forma de grade de ocupação. Por outro lado, a representação dos mapas 3D é feita na forma de nuvem de pontos ao invés de grade, para reduzir o custo computacional. É considerado um robô móvel equipado com apenas um LRF, sem nenhuma informação de odometria. O alinhamento entre varreduras laser é otimizado fazendo o uso de Algoritmos Genéticos. Assim, podem-se construir mapas e ao mesmo tempo localizar o robô sem necessidade de odômetros ou outros sensores. Um simulador em Matlab é implementado para a geração de varreduras virtuais de um LRF em um ambiente 3D (virtual). A metodologia proposta é validada com os dados simulados, assim como com dados experimentais obtidos da literatura, demonstrando a possibilidade de construção de mapas 3D com apenas um sensor LRF. / [en] Simultaneous Localization and Mapping (SLAM) is one of the most widely researched areas of Robotics. It addresses the mobile robot problem of generating a map without prior knowledge of the environment, while keeping track of its position. Although technology offers increasingly accurate position sensors, even small measurement errors can accumulate and compromise the localization accuracy. This becomes evident when programming a robot to return to its original position after traveling a long distance, based only on its sensor readings. Thus, to improve SLAM s performance it is necessary to represent its formulation using probability theory. The Extended Kalman Filter SLAM (EKF-SLAM) is a basic solution and, despite its shortcomings, it is by far the most popular technique. Fast SLAM, on the other hand, solves some limitations of the EKFSLAM using an instance of the Rao-Blackwellized particle filter. Another successful solution is to use the DP-SLAM approach, which uses a grid representation and a hierarchical algorithm to build accurate 2D maps. All SLAM solutions require two types of sensor information: odometry and range measurement. Laser Range Finders (LRF) are popular range measurement sensors and, because of their accuracy, are well suited for odometry error correction. Furthermore, the odometer may even be eliminated from the system if multiple consecutive LRF scans are matched. This works presents a detailed implementation of these three SLAM solutions, focused on structured indoor environments. The implementation is able to map 2D environments, as well as 3D environments with planar terrain, such as in a typical indoor application. The 2D application is able to automatically generate a stochastic grid map. On the other hand, the 3D problem uses a point cloud representation of the map, instead of a 3D grid, to reduce the SLAM computational effort. The considered mobile robot only uses a single LRF, without any odometry information. A Genetic Algorithm is presented to optimize the matching of LRF scans taken at different instants. Such matching is able not only to map the environment but also localize the robot, without the need for odometers or other sensors. A simulation program is implemented in Matlab to generate virtual LRF readings of a mobile robot in a 3D environment. Both simulated readings and experimental data from the literature are independently used to validate the proposed methodology, automatically generating 3D maps using just a single LRF.
22

Řízení invalidního vozíku / Control of a wheelchair

Vožda, Ondřej January 2013 (has links)
This thesis describes development of control algorithm for a wheelchair. Wheelchair should be capable of tracking and following a wall or a similar flat surface. Thesis is supposed to be an extension of the previous concept, whose purpose was to allow remote telepresence control of this wheelchair. SRF08 ultrasonic range finders are used to measure distance from the wall. Furthermore, image processing for mark detection is discussed. Purpose of these marks is to increase precision during final phase of the parking.
23

Senzorika a řízení pohonů 4 kolového mobilního robotu / Sensors and motor control of mobile robot

Zatloukal, Jiří January 2013 (has links)
The diploma thesis is dealing with the proposal and realization of the sensor and drive system of the four wheel mobile robot. The control unit is a miniature computer Raspberry Pi. The robot will be employed in the future for the environment mapping and location. For this purpose robot exploits the different types of sensors. The information of these sensors is being processed by the Xmega microcontroller. Another microcontroller together with H-bridge DRV-8432 is used to control the direct current drives.
24

Sensordatenfusion zur robusten Bewegungsschätzung eines autonomen Flugroboters

Wunschel, Daniel 15 March 2012 (has links) (PDF)
Eine Voraussetzung um einen Flugregler für Flugroboter zu realisieren, ist die Wahrnehmung der Bewegungen dieses Roboters. Diese Arbeit beschreibt einen Ansatz zur Schätzung der Bewegung eines autonomen Flugroboters unter Verwendung relativ einfacher, leichter und kostengünstiger Sensoren. Mittels eines Erweiterten Kalman Filters werden Beschleunigungssensoren, Gyroskope, ein Ultraschallsensor, sowie ein Sensor zu Messung des optischen Flusses zu einer robusten Bewegungsschätzung kombiniert. Dabei wurden die einzelnen Sensoren hinsichtlich der Eigenschaften experimentell untersucht, welche für die anschließende Erstellung des Filters relevant sind. Am Ende werden die Resultate des Filters mit den Ergebnissen einer Simulation und eines externen Tracking-Systems verglichen.
25

Sensordatenfusion zur robusten Bewegungsschätzung eines autonomen Flugroboters

Wunschel, Daniel 24 October 2011 (has links)
Eine Voraussetzung um einen Flugregler für Flugroboter zu realisieren, ist die Wahrnehmung der Bewegungen dieses Roboters. Diese Arbeit beschreibt einen Ansatz zur Schätzung der Bewegung eines autonomen Flugroboters unter Verwendung relativ einfacher, leichter und kostengünstiger Sensoren. Mittels eines Erweiterten Kalman Filters werden Beschleunigungssensoren, Gyroskope, ein Ultraschallsensor, sowie ein Sensor zu Messung des optischen Flusses zu einer robusten Bewegungsschätzung kombiniert. Dabei wurden die einzelnen Sensoren hinsichtlich der Eigenschaften experimentell untersucht, welche für die anschließende Erstellung des Filters relevant sind. Am Ende werden die Resultate des Filters mit den Ergebnissen einer Simulation und eines externen Tracking-Systems verglichen.

Page generated in 0.0602 seconds