• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Simulation of LFM Pulse-Doppler Radar and an Application of Cohen-Daubechies-Feauveau Wavelets in CFAR Detection

Wright, Aaron Joshua 08 December 2017 (has links)
This thesis presents a simulation of an LFM pulse-Doppler radar for surface-to-air applications and compares the performance of multiple CFAR detectors in processing the resulting range-Doppler maps. Each CFAR detector is reviewed and simulated. Their effectiveness in reducing target masking is analyzed. In addition, a new CFAR detector, the RDWT-CA-CFAR detector, is developed that uses the CDF 5/3 wavelet to decompose the range-data of the range-Doppler map along the range dimension and filter the target data from the reference cells, as a means to reduce or eliminate target masking. The QccPack library is used to perform RDWT functions. It is shown that the novel RDWT-CA-CFAR detector performs better in processing range-Doppler maps when compared to the other robust CFAR detectors covered in this project.
2

A Study of the Impact of Hardware Design Choices on the System Impulse Response of a Signal-level Radar Simulation

Feirstine, Kelly Renee 08 October 2006 (has links)
No description available.
3

Passive Radar Imaging with Multiple Transmitters

Brandewie, Aaron January 2021 (has links)
No description available.
4

Contact-Less High Speed Measurement over Ground with 61 GHz Radar Sensor

Imran, Muneeb 01 November 2016 (has links) (PDF)
Conventional FMCW radar principle was implemented on Symeo 61 GHz LPR®-1DHP-R radar sensor system. There were few limitations of the FMCW implementation which needed to be removed. First, target separation in multi target environment was not possible for objects at same distance. For example, there are two targets, one is moving and one is static. When the moving target approaches the static target and becomes parallel to static target, which means they are at the same distance. At this point, the system is unable to distinguish between two targets. Second, high resolution in velocity measurement was needed. To overcome these limitations Range Doppler Signal Processing was proposed. For the implementation of the Range Doppler algorithm, first of all proof of concept is needed. Simulations are performed using MATLAB to simulate Range Doppler algorithm using raw data from the sensor. After successful simulation, prototype is developed using python. This also provides the real time visualization of Range Doppler signal processing along with peak detection with distance and velocity measurements. With the Range Doppler implementation, separation between static and moving target becomes possible. Later the algorithm is implemented on Texas Instrument DSP in C considering the resource limitations of the target hardware. To validate the Range Doppler implementation and to determine the measurements accuracy, multiple test setups are created. Two main local testing environments have been setup, linear unit and turntable. The system is tested on these environments for different velocities and distances along with multiple targets and on different surfaces. Furthermore, the system is tested at an industrial site for detecting the fluid speed, which is also possible with the Range Doppler implementation.
5

Détection, localisation et identification de cibles radar par imagerie électromagnétique bistatique

Comblet, Fabrice 01 December 2005 (has links) (PDF)
L'objectif de cette thèse est de développer, caractériser et analyser l'imagerie radar en configuration bistatique. Dans le cadre de notre étude, nous nous plaçons dans le cas général d'une configuration bistatique sans condition sur la configuration d'acquisition. Nous avons alors développé un algorithme de reconstruction d'images tenant compte des polarisations d'émission et de réception. Ainsi, nous avons pu caractériser les images obtenues et donner l'expression des résolutions d'une image bistatique en fonction de la configuration d'acquisition. Ensuite, nous avons étudié les images bistatiques reconstruites lors de l'observation de cibles complexes ainsi que celles obtenues lors de la détection de cibles sur une surface océanique afin de les comparer avec celles d'une configuration monostatique. Les résultats ainsi obtenus permettent de valider l'intérêt de la configuration bistatique et de présenter les nouvelles perspectives qu'offre ce sujet de recherche en imagerie radar.
6

Analyse des micro-Doppler de cibles mobiles déformables en imagerie radar

Ghaleb, Antoine 09 February 2009 (has links) (PDF)
Les méthodes traditionnelles de formation d'images ISAR supposent que la cible est rigide et ne tiennent pas compte de ses déformations géométriques. Ces mouvements, qui s'ajoutent au déplacement global de la cible, créent une modulation en fréquence sur le signal réfléchi. Ce phénomène, aussi appelé effet micro-Doppler, se traduit d'un point de vue spectral par un étalement des fréquences autour de la fréquence Doppler centrale. Comme les caractéristiques de ces modulations sont directement reliées aux propriétés géométriques et dynamiques de la cible, l'analyse de l'effet micro-Doppler peut apporter des informations complémentaires aux méthodes existantes de reconnaissance de cibles mobiles. Les travaux précédents ont principalement été consacrés à l'analyse temporelle de l'effet micro-Doppler sans tenir compte de la dimension spatiale. En outre, mis à part les cas d'étude théoriques, il existe très peu de modélisations et de données réelles de cibles déformables. A travers les exemples de la roue et du piéton, cette thèse consiste à caractériser finement les effets des déformations géométriques en imagerie radar, en combinant l'analyse en distance et en Doppler. En outre, un accent est mis sur l'influence de la géométrie relative entre le radar et la cible.\\ Ces travaux s'appuient sur un large volet expérimental où sont exploitées les données issues du radar HYCAM, un système d'acquisition large bande développé par l'ONERA. En complément des mesures, le développement d'un outil de simulation permet de faire le lien entre les données réelles et le modèle de l'objet afin d'extraire des grandeurs physiques du phénomène étudié.
7

Spectral And Statistical Analyses Of Experimental Radar Clutter Data

Kahyaoglu, Nazli Deniz 01 December 2010 (has links) (PDF)
The performance of radar detection and imaging systems strongly depends on the characteristics of radar clutter. In order to improve the radar signal processing algorithms, successful analysis and modeling of radar clutter are required. For a successful model of radar clutter, both the spectral and statistical characteristics of the clutter should be revealed. Within the scope of this study, an experimental radar data acquisition system is established to analyze radar clutter. The hardware and the data processing system are first verified using generic signals and then a set of measurements is taken in the open terrain. In this thesis, the limitations and problems encountered during the establishment of the system are explained in detail. The spectral and statistical analyses performed on the recorded data are examined. The temporal and spatial behavior of the measured clutter data are explored. The hypothetical models proposed so far in the literature are tested on the experimental data and the fitting of models to the experimental data is confirmed using various goodness-of-fit tests. Finally, the results of the analyses are interpreted in the light of the radar system parameters and the characteristics of the illuminated terrain.
8

Contact-Less High Speed Measurement over Ground with 61 GHz Radar Sensor

Imran, Muneeb 29 September 2016 (has links)
Conventional FMCW radar principle was implemented on Symeo 61 GHz LPR®-1DHP-R radar sensor system. There were few limitations of the FMCW implementation which needed to be removed. First, target separation in multi target environment was not possible for objects at same distance. For example, there are two targets, one is moving and one is static. When the moving target approaches the static target and becomes parallel to static target, which means they are at the same distance. At this point, the system is unable to distinguish between two targets. Second, high resolution in velocity measurement was needed. To overcome these limitations Range Doppler Signal Processing was proposed. For the implementation of the Range Doppler algorithm, first of all proof of concept is needed. Simulations are performed using MATLAB to simulate Range Doppler algorithm using raw data from the sensor. After successful simulation, prototype is developed using python. This also provides the real time visualization of Range Doppler signal processing along with peak detection with distance and velocity measurements. With the Range Doppler implementation, separation between static and moving target becomes possible. Later the algorithm is implemented on Texas Instrument DSP in C considering the resource limitations of the target hardware. To validate the Range Doppler implementation and to determine the measurements accuracy, multiple test setups are created. Two main local testing environments have been setup, linear unit and turntable. The system is tested on these environments for different velocities and distances along with multiple targets and on different surfaces. Furthermore, the system is tested at an industrial site for detecting the fluid speed, which is also possible with the Range Doppler implementation.
9

Polarimetrische Streuungseigenschaften und Fokussierungsmethoden zur quantitativen Auswertung der polarimetrischen SAR-Daten

Phruksahiran, Narathep 08 March 2013 (has links) (PDF)
Das Radar mit synthetischer Apertur (Synthetic Aperture Radar - SAR) liefert eine quasi-fotographische Abbildung der beleuchteten Bodenoberfläche mit zusätzlichen Informationen, die von der gesendeten und empfangenen Polarisation der Wellen abhängig sind. Eine nützliche Anwendung der polarimetrischen SAR-Daten liegt bei der Klassifizierung der Bodenstruktur anhand der polarimetrischen Streuungseigenschaften. In diesem Zusammenhang beschäftigt sich die vorliegende Arbeit mit der Entwicklung und Untersuchung neuer polarimetrischen Fokussierungsfunktion für die SAR-Datenverarbeitung mit Hilfe der polarimetrischen Rückstreuungseigenschaft, die zu einer alternativen quantitativen Auswertung der polarimerischen SAR-Daten führen kann. Die physikalische Optik Approximation wird für die numerische Berechnung der rückgestreuten elektrischen Felder der kanonischen Ziele unter SAR-Geometrie unter Berücksichtigung der Polarisationslage verwendet. Aus den rückgestreuten elektrischen Felder werden die polarimetrischen Radarrückstreuquerschnitte berechnet. Ein SAR-Simulator wird zur Datenverarbeitung der E-SAR des DLR entwickelt. Der Ansatz des polarimetrischen Radarrückstreuquerschnittes ermöglicht die approximierte numerische Berechnung der Rückstreuungseigenschaften der kanonischen Ziele sowohl im kopolaren als auch im kreuzpolaren Polarisationsbetrieb. Bei der SAR-Datenverarbeitung werden die Rohdatensätze durch die Referenzfunktion eines Punktzieles in der Entfernungsrichtung verarbeitet. Bei der Azimutkompression werden die vier Referenzfunktionen, das heißt die Referenzfunktion eines Punktzieles, die polarimetrische Fokussierungsfunktion einer flachen Platte, die polarimetrische Fokussierungsfunktion eines Zweifach-Reflektors und die polarimetrische Fokussierungsfunktion eines Dreifach-Reflektors, eingesetzt. Die qunatitativen Auswertung der SAR-Daten werden anhand des Pauli-Zerlegungstheorems, der differentiellen Reflektivität und des linearen Depolarisationsverhältnises durchgeführt.
10

Polarimetrische Streuungseigenschaften und Fokussierungsmethoden zur quantitativen Auswertung der polarimetrischen SAR-Daten

Phruksahiran, Narathep 05 March 2013 (has links)
Das Radar mit synthetischer Apertur (Synthetic Aperture Radar - SAR) liefert eine quasi-fotographische Abbildung der beleuchteten Bodenoberfläche mit zusätzlichen Informationen, die von der gesendeten und empfangenen Polarisation der Wellen abhängig sind. Eine nützliche Anwendung der polarimetrischen SAR-Daten liegt bei der Klassifizierung der Bodenstruktur anhand der polarimetrischen Streuungseigenschaften. In diesem Zusammenhang beschäftigt sich die vorliegende Arbeit mit der Entwicklung und Untersuchung neuer polarimetrischen Fokussierungsfunktion für die SAR-Datenverarbeitung mit Hilfe der polarimetrischen Rückstreuungseigenschaft, die zu einer alternativen quantitativen Auswertung der polarimerischen SAR-Daten führen kann. Die physikalische Optik Approximation wird für die numerische Berechnung der rückgestreuten elektrischen Felder der kanonischen Ziele unter SAR-Geometrie unter Berücksichtigung der Polarisationslage verwendet. Aus den rückgestreuten elektrischen Felder werden die polarimetrischen Radarrückstreuquerschnitte berechnet. Ein SAR-Simulator wird zur Datenverarbeitung der E-SAR des DLR entwickelt. Der Ansatz des polarimetrischen Radarrückstreuquerschnittes ermöglicht die approximierte numerische Berechnung der Rückstreuungseigenschaften der kanonischen Ziele sowohl im kopolaren als auch im kreuzpolaren Polarisationsbetrieb. Bei der SAR-Datenverarbeitung werden die Rohdatensätze durch die Referenzfunktion eines Punktzieles in der Entfernungsrichtung verarbeitet. Bei der Azimutkompression werden die vier Referenzfunktionen, das heißt die Referenzfunktion eines Punktzieles, die polarimetrische Fokussierungsfunktion einer flachen Platte, die polarimetrische Fokussierungsfunktion eines Zweifach-Reflektors und die polarimetrische Fokussierungsfunktion eines Dreifach-Reflektors, eingesetzt. Die qunatitativen Auswertung der SAR-Daten werden anhand des Pauli-Zerlegungstheorems, der differentiellen Reflektivität und des linearen Depolarisationsverhältnises durchgeführt.

Page generated in 0.0502 seconds