111 |
Rôle de la plasticité synaptique des interneurones somatostatinergiques dans l’apprentissage et la mémoire dépendants de l’hippocampeLa Fontaine, Alexandre 06 1900 (has links)
La plasticité synaptique activité-dépendante forme la base physiologique de l’apprentissage et de la mémoire dépendants de l’hippocampe. Le rôle joué par les différents sous-types d’interneurones dans l’apprentissage et la mémoire hippocampiques reste inconnu, mais repose probablement sur des mécanismes de la plasticité spécifique aux synapses de certains sous-types d’interneurones. Les synapses excitatrices établies sur les interneurones de l’oriens-alveus dans l’aire CA1 exhibent une forme persistante de potentialisation à long terme induite par la stimulation chimique des récepteurs métabotropiques du glutamate de type 1 (mGluR1) [mGluR1-mediated chemical late long-term potentiation (cL-LTPmGluR1)]. Le présent projet de recherche avait pour objectifs d’identifier les sous-types d’interneurones de l’oriens-alveus exprimant la cL-LTPmGluR1 et d’examiner les mécanismes d’induction et d’expression de celle-ci. Nous avons déterminé que la stimulation répétée des mGluR1 induit de la cL-LTPmGluR1 aux synapses excitatrices établies sur le sous-type d’interneurones exprimant le peptide somatostatine (SOM-INs). Des enregistrements électrophysiologiques couplés à des inhibiteurs pharmacologiques et à un knock-out fonctionnel de mammalian target of rapamycin complexe 1 (mTORC1) ont montré que l’induction de la cL-LTPmGluR1 (qui consiste en trois applications de l’agoniste des mGluR1/5, le (S)-3,5-dihydroxyphénylglycine (DHPG) en présence de l’antagoniste des récepteurs métabotropiques du glutamate de type 5 (mGluR5), le 2-méthyl-6-(phényléthynyl)-pyridine (MPEP)) des SOM-INs requiert les voies de signalisation des mGluR1, de extracellular signal-regulated protein kinase (ERK) et de mTORC1. L’ensemble de nos résultats montre qu’une forme persistante de plasticité synaptique sous-tendue par mTORC1 est induite par la stimulation répétée des mGluR1 dans les interneurones hippocampiques exprimant le peptide somatostatine. La connaissance des mécanismes sous-tendant la cL-LTPmGluR1, couplée à l’utilisation de modèles animal in vivo, rendront maintenant possible le blocage de la cL-LTPmGluR1 dans les SOM-INs et l’examen de son rôle dans l’apprentissage et la mémoire dépendants de l’hippocampe. / Hippocampus-dependent learning and memory are mediated by activity-dependent synaptic plasticity. The role that different subtypes of interneurons play in hippocampal learning and memory remains largely unknown, but likely relies on cell type-specific plasticity mechanisms at interneuron synapses. Excitatory synapses onto CA1 oriens-alveus interneurons show persistent long-term potentiation induced by chemical stimulation of metabotropic glutamate receptor 1 (mGluR1) [mGluR1-mediated chemical late long-term potentiation (cL-LTPmGluR1)]. The objectives of this project were to identify the oriens-alveus interneuron subtypes expressing cL-LTPmGluR1 and examine its induction and expression mechanisms. We determined that repeated mGluR1 stimulation induces cL-LTPmGluR1 at excitatory synapses onto the somatostatin-expressing interneuron subtype (SOM-INs). Electrophysiological recordings coupled to pharmacological inhibitors and a functional knock-out of mammalian target of rapamycin complex 1 (mTORC1) showed that SOM-INs cL-LTPmGluR1 induction (which consisted of three applications of the mGluR1/5 agonist (S)-3,5-dihydroxyphenylglycine (DHPG) in the presence of metabotropic glutamate receptor 5 (mGluR5) antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP)) requires mGluR1, extracellular signal-regulated protein kinase (ERK) and mTORC1 signaling pathways. Collectively, our results show that persistent synaptic plasticity mediated by mTORC1 is induced by repeated mGluR1 stimulation in somatostatin-expressing hippocampal interneurons. Knowledge of cL-LTPmGluR1’s underlying mechanisms, coupled to in vivo models, will now make it possible to interfere with SOM-INs cL-LTPmGluR1 and examine its role in hippocampal-dependent learning and memory.
|
112 |
Regulation of UV-Protective Pathways Downstream of the Melanocortin 1 Receptor in MelanocytesWolf Horrell, Erin M. 01 January 2016 (has links)
Malignant cutaneous melanoma is the deadliest form of skin cancer, and a majority of melanoma diagnoses are a result of exposure to ultraviolet (UV) radiation. UV radiation causes DNA damage, which if not repaired correctly via nucleotide excision repair (NER) can result in mutations and melanomagenesis. The melanocortin 1 receptor (MC1R) is a Gs protein coupled receptor located on melanocyte plasma membranes and is involved in protecting the skin from UV induced damage. MC1R signaling results in the activation of two protective pathways: 1) induction of eumelanin synthesis downstream of micropthalmia-associated transcription factor (MITF) and 2) acceleration of NER downstream of ataxia telangiectaseia mutated and Rad3 related (ATR). MC1R signaling, however, also promotes melanocyte proliferation, therefore, the activation of the MC1R pathway must be regulated. The overall hypothesis of this dissertation is that the pathways downstream of MC1R can be manipulated to protect against UV induced damage.
Chapter 2 investigates the regulation of the MC1R neutral antagonist human β-defensin 3 (βD3). UV damage did not induce βD3 mRNA expression in ex vivo human skin explants. The induction of βD3 expression instead correlated with inflammatory cytokines including TNF.
Chapter 3 investigates the interdependence and cross talk between the two protective pathways downstream of MC1R. We directly tested the effect of MITF on the acceleration of NER and the effect of ATR on the induction of eumelanin synthesis following MC1R activation. MITF was not required for the acceleration of NER as mediated by ATR, however, the induction of transcription of enzymes involved in eumelanin synthesis was dependent upon ATR kinase activity.
Finally, Chapter 4 investigates the mechanism by which MC1R promoted proliferation and whether the two UV protective pathways downstream of MC1R could be selectively activated without the risk of melanocyte proliferation. MC1R signaling resulted in activation of the mechanistic target of rapamycin complex 1 (mTORC1), a major regulator of cell growth and proliferation. Inhibition of mTORC1 signaling via rapamycin prevented MC1R induced proliferation in vitro. Rapamycin, however, did not prevent MC1R induced eumelanin synthesis or the acceleration of NER in vitro or in vivo suggesting it is possible to selectively activate the beneficial signaling pathways without the risk of melanocyte proliferation.
The results of this dissertation suggest that MC1R signaling could be augmented in individuals to prevent UV induced damage.
|
113 |
The role of the peptidyl prolyl isomerase Rrd1 in the transcriptional stress responsePoschmann, Jeremie 08 1900 (has links)
La régulation de la transcription est un processus complexe qui a évolué pendant des millions
d’années permettant ainsi aux cellules de s’adapter aux changements environnementaux. Notre
laboratoire étudie le rôle de la rapamycine, un agent immunosuppresseur et anticancéreux, qui
mime la carence nutritionelle. Afin de comprendre les mécanismes impliqués dans la réponse a
la rapamycine, nous recherchons des mutants de la levure Saccaromyces cerevisiae qui ont un
phenotype altérée envers cette drogue. Nous avons identifié le gène RRD1, qui encode une
peptidyl prolyl isomérase et dont la mutation rend les levures très résistantes à la rapamycine et il
semble que se soit associé à une réponse transcriptionelle alterée. Mon projet de recherche de
doctorat est d’identifier le rôle de Rrd1 dans la réponse à la rapamycine. Tout d’abord nous
avons trouvé que Rrd1 interagit avec l’ARN polymérase II (RNAPII), plus spécifiquement avec
son domaine C-terminal. En réponse à la rapamycine, Rrd1 induit un changement dans la
conformation du domaine C-terminal in vivo permettant la régulation de l’association de RNAPII
avec certains gènes. Des analyses in vitro ont également montré que cette action est directe et
probablement liée à l’activité isomérase de Rrd1 suggérant un rôle pour Rrd1 dans la régulation
de la transcription. Nous avons utilisé la technologie de ChIP sur micropuce pour localiser Rrd1
sur la majorité des gènes transcrits par RNAPII et montre que Rrd1 agit en tant que facteur
d’élongation de RNAPII. Pour finir, des résultats suggèrent que Rrd1 n’est pas seulement
impliqué dans la réponse à la rapamycine mais aussi à differents stress environnementaux, nous
permettant ainsi d’établir que Rrd1 est un facteur d’élongation de la transcription requis pour la
régulation de la transcription via RNAPII en réponse au stress. / Transcriptional regulation is a complex process that has evolved over millions of years of
evolution. Cells have to sense environmental conditions and adapt to them by altering their
transcription. Herein, we study the role of rapamycin, an immunosuppressant and anticancer
molecule that mimics cellular starvation. To understand how the action of rapamycin is
mediated, we analyzed gene deletion mutants in the yeast Saccharomyces cerevisiae that have an
altered response to this drug. Deletion of RRD1, a gene encoding a peptidyl prolyl isomerase,
causes strong resistance to rapamycin and this was associated with a role of Rrd1 in the
transcriptional response towards rapamycin. The main focus of my PhD was therefore to unravel
the role of Rrd1 in response to rapamycin. First, we discovered that Rrd1 interacts with RNA
polymerase II (RNAPII), more specifically with its C-terminal domain and we showed that in
response to rapamycin, Rrd1 alters the structure of this C-terminal domain. This phenomenon
was confirmed to be directly mediated by Rrd1 in vitro, presumably through its peptidyl prolyl
isomerase activity. Further, we demonstrated that Rrd1 is capable of altering the occupancy of
RNAPII on genes in vivo and in vitro. With the use of ChIP on chip technology, we show that
Rrd1 is actually a transcription elongation factor that is associated with RNAPII on actively
transcribed genes. In addition, we demonstrate that Rrd1 is indeed required to regulate the
expression of a large subset of genes in response to rapamycin. This data let us propose a novel
mechanism by which Rrd1 regulates RNAPII during transcription elongation. Finally, we
provide evidence that Rrd1 is not only required for an efficient response towards rapamycin but
to a larger variety of environmental stress conditions, thus establishing Rrd1 as a transcriptional
elongation factor required to fine tune the transcriptional stress response of RNAPII.
|
114 |
Développement de méthodes analytiques pour la protéomique et l'identification de peptides MHC I issus de cellules leucémiquesFortier, Marie-Hélène January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
115 |
La Rapamycine inhibe l’expression de l’ARNm de l’ADAMTS-4 induit par les cytokines dans les chondrocytes articulairesKhalifé, Sarah 02 1900 (has links)
Introduction: Durant la pathogenèse d’ostéoarthrose (OA), les cytokines pro-inflammatoires IL-1β (Interleukin-1 beta) et TNF-α (Tumor necrosis factor alpha) stimulent la dégradation des agrécanes par l’aggrécanase-1 ou ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motif). Ces cytokines peuvent stimuler plusieurs voies de signalisation conduisant ainsi à l’augmentation de l’expression des ADAMTS dans les chondrocytes humains. Les TIMPs (tissue inhibitor of metalloproteinases) présentent des inhibiteurs endogènes de l’ADAMTS. Nous avons démontré que la Rapamycine (un immunosuppresseur et un inhibiteur du mamalian target of Rapamycin (mTOR)) peut avoir des effets bénéfiques dans cette pathologie. Notre étude examine l’effet de la Rapamycine sur l’expression de l’ADAMTS-4 induit par les cytokines, son implication dans certaines voies de signalisation, et son effet sur l’expression du TIMP-3.
Méthodes: Des chondrocytes normaux sont traités avec la Rapamycine seule ou stimulés aussi avec l’IL-1β et le TNF-α. Les effets de la Rapamycine sur l’expression de l’ADAMTS-4 et du TIMP-3 ont été étudiés par l’analyse RT-PCR et l’activité enzymatique a été étudiée par la technique d’ELISA. Les effets de la Rapamycine sur certaines voies de signalisation ont été étudiés par le Western blot.
Résultats: Nous avons trouvé que la Rapamycine inhibe l’expression de l’ARNm de l’ADAMTS-4 induit par les cytokines pro-inflammatoires dans les chondrocytes humains. L’activité enzymatique de l’ADAMTS-4 induit par l’IL-1β a été légèrement diminuée par la Rapamycine. En plus, cette dernière a montré de différents effets sur plusieurs voies de signalisation stimulées par l’IL-1β et le TNF-α telles que les voies des MAPKs (Mitogen activated protein kinase), de l’AKT, et de la p70 S6 kinase. La Rapamycine a inhibé partiellement l’activation de la phosphorylation de l’ERK1/2 MAPK (extracellular signal-regulated protein kinase MAPK) en présence du TNF-α seulement. En outre, la Rapamycine a inhibé la phosphorylation des protéines p38 MAPK, JNK (c-Jun N-terminal kinase), et AKT activée par l’IL-1β seulement. En plus, la phosphorylation de la protéine p70 S6K stimulée par l’IL-1β et le TNF-α a été inhibée par la Rapamycine. D’autre part, nous avons démontré que le niveau du TIMP-3 a été augmenté en présence de la Rapamycine.
Conclusion: Ces résultats suggèrent que la Rapamycine peut bloquer l’action de l’ADAMTS-4 via l’inhibition de l’activation des MAPKs, de l’AKT, et de la p70 S6K. La Rapamycine pourrait ainsi être considérée pour la prévention de la perte du cartilage chez les patients ostéoarthritiques. / Introduction: During the pathogenesis of osteoarthritis, the pro-inflammatory cytokines IL-1β (Interleukin-1 beta) and TNF-α (Tumor necrosis factor alpha) stimulate the degradation of aggrecans by aggrecanase-1 or ADAMTS-4 (A disintegrin and metalloproteinase with thrombospondin motif). These cytokines may stimulate several signaling pathways leading to an increased expression of ADAMTS-4 in human chondrocytes. The TIMPs (tissue inhibitor of metalloproteinases) are endogens inhibitors of ADAMTS-4. It has been shown that Rapamycin (an immunosuppressor and an inhibitor of the mammalian target of rapamycin or mTOR) may have beneficial effects in this pathology. Our study investigates the impact of Rapamycin on cytokine-induced expression of ADAMTS-4, his implication in certain signaling pathways, and his effects on the expression of TIMP-3.
Methods: Human chondrocytes were pretreated with different doses of Rapamycin either alone or stimulated with IL-β and TNF-α. The effect on ADAMTS-4 expression was examined by RT-PCR analysis and enzyme activity by ELISA. Impact of Rapamycin on the activation of different signaling pathways was measured by Western blot analysis.
Results: We have shown that Rapamycin down-regulated pro-inflammatory cytokines-induced ADAMTS-4 mRNA expression in human chondrocytes. The IL-1β-induced-enzymatic activity of ADAMTS-4 was slightly inhibited by Rapamycin. Furthermore, Rapamycin present different effects on pro-inflammatory cytokines-stimulated activation of certain signaling pathways such as MAPKs (Mitogen activated protein kinases), AKT, and P70 S6 kinase. Moreover, Rapamycin partially inhibits TNF-α-induced activation of phosphorylation of ERK1/2 MAPK (extracellular signal-regulated protein kinase MAPK). Thus, Rapamycin inhibit IL-1β-induced activation of phosphorylation of the proteins p38 MAPK, JNK (c-Jun N-terminal kinase), and AKT. Also, Rapamycin inhibit IL-1β and TNF-α-activation of phosphorylation of the protein p70 S6 kinase. In other way, we have shown that the level of TIMP-3 has been increased in the presence of Rapamycin.
Conclusion: These results suggest that Rapamycin down-regulates the expression of ADAMTS-4 by inhibiting the cytokine activation of MAPKs, AKT, and p70 S6 kinase. Thus Rapamycin could be considered as potential therapeutic agent for prevention of cartilage loss in patient with osteoarthritis.
|
116 |
Rôle de l'autophagie dans la dissémination du VIH-1 par les cellules dendritiques dérivées des monocytes circulantsTep, Tévy-Suzy 10 1900 (has links)
Les cellules myéloïdes incluant les monocytes, les macrophages et les cellules dendritiques (DCs, dendritic cells) contribuent à la pathogénèse de l’infection à VIH-1 en participant à la dissémination du virus, mais également en représentant des réservoirs viraux potentiels. Leurs fonctions sont exploitées par le VIH-1 afin d’assurer sa propagation à travers l’organisme. Notamment, une infection à VIH-1 est associée à une altération de la présentation antigénique et la perte de lymphocytes T CD4+ spécifiques à des antigènes. L’autophagie est un processus catabolique universel impliqué dans la régulation de la présentation antigénique subséquente à la neutralisation/destruction du pathogène. Des études récentes suggèrent que le VIH-1 altère le mécanisme d’autophagie afin d’assurer sa survie. Le premier volet de ce projet de maîtrise a visé la caractérisation des effets du VIH-1 sur l’autophagie dans les DCs dérivées de monocytes circulants (MDDC, monocyte-derived dendritic cells) et l’identification des stratégies thérapeutiques pour contrecarrer ces effets. Les objectifs spécifiques ont été de : (i) caractériser l’expression de marqueurs de maturation sur des MDDC exposées au VIH-1 in vitro, (ii) quantifier l’expression des protéines liées à la régulation positive (i.e., ATG5, LC3, p62) et négative (i.e., mTOR) de l’autophagie dans les MDDC exposées au VIH, (iii) déterminer le rôle de l’autophagie dans la trans infection du VIH-1 aux lymphocytes T CD4+ et (iv) explorer l’impact de l’autophagie sur la présentation antigénique par les MDDC infectées à VIH-1 in vitro. Nos résultats démontrent qu’une exposition des MDDC au VIH-1 in vitro altère dramatiquement leur maturation et leur habileté à induire la prolifération des cellules T autologues en réponse à Staphylococcus aureus et Cytomegalovirus (CMV) mais pas la réponse induite par Staphylococcal enterotoxin B (SEB). Nous démontrons que l’exposition des MDDC au VIH s’associe à une augmentation de l’expression de la protéine mTOR totale et de sa forme phosphorylée (phospho-mTOR) et de la protéine p62. Le traitement des MDDC à la rapamycine diminue l’expression de mTOR et réduit la capacité de trans infection du VIH-1 par les MDDC, sans toutefois restaurer leur potentiel immunogène. En effet, nous observons que la rapamycine réduit l’expression de CD83 par les MDDC et augmente l’expression de CCR7, indiquant ainsi que l’effet immunosuppresseur documenté de la rapamycine est associé à une défaillance de maturation des MDDC. Le second volet de ce projet de recherche s’est intéressé à la contribution des cellules myéloïdes à la persistance virale chez les sujets infectés par le VIH-1 sous thérapie antirétrovirale. Les objectifs spécifiques ont été : (i) d’évaluer la présence de différentes formes d’ADN viral dans les monocytes circulants de patients infectés par le VIH-1 et (ii) de mesurer l’intégration et la réplication virale dans des macrophages dérivés de monocytes (MDM) de patients infectés sous ART. Nos résultats indiquent que les monocytes portent des formes précoces de transcription virale inverse (ADN du VIH RU5) et que, malgré une charge virale plasmatique indétectable sous ART, les MDM supportent la réplication virale. Ces données très préliminaires apportent des évidences en faveur de la contribution des cellules myéloïdes à la persistance virale sous ART et représentent une ouverture pour un projet de recherche plus complexe dans le futur. En somme, nos résultats démontrent que le VIH-1 altère le potentiel immunogène des MDDC et que la rapamycine peut être employée pour limiter la trans infection des lymphocytes T CD4+ par les MDDC. Néanmoins, l’incapacité de la rapamycine à rétablir le potentiel immunogène des MDDC incite à identifier de nouvelles stratégies manipulant l’autophagie pour une restauration optimale de la compétence immunitaire chez les sujets infectés à VIH-1. Les cellules myéloïdes jouent un rôle primordial dans la dissémination et la persistance virale et doivent donc être ciblées par les stratégies actuelles d’éradication des réservoirs du VIH sous ART. / Myeloid cells including monocytes, macrophages and dendritic cells (DC) contribute to HIV-1 pathogenesis by participating in viral dissemination but also by representing potential viral reservoirs. Myeloid cells functions are exploited by HIV in order for the virus to spread throughout the organism. Notably, HIV-1 infection is associated with alterations in antigen presentation and the loss of pathogen-specific CD4+ T-cells. Autophagy is a universal catabolic process involved in the regulation of antigen presentation subsequent to pathogen neutralization/destruction. Recent studies suggest that HIV inhibits autophagy in DC so that it survives within the host. The goal of the main part of this master’s research project was to characterize the effects of the HIV exposure on the autophagy process in monocytes-derived DC (MDDC) and to identify therapeutic strategies to counteract these effects. The specific aims were to : (i) measure the expression of maturation markers on MDDC exposed to HIV-1 in vitro (ii) quantify the expression of proteins that positively (i.e., ATG5, LC3, p62) or negatively regulate autophagy (i.e., mTOR), (iii) determine autophagy role in HIV-1 trans infection to CD4+ lymphocytes T and (iv) explore the impact of autophagy on antigen presentation by in vitro HIV-infected MDDC. Our results demonstrated that exposure to HIV in vitro dramatically impaired MDDC maturation and their ability to induce proliferation of autologous CD4+ T-cells in response to Staphylococcus aureus and Cytomegalovirus (CMV) but not Staphylococcal enterotoxin B (SEB). Exposition of MDDC to HIV-1 was associated with an increase of mTOR, phosphomTOR and p62 expression. Treatment of MDDC with rapamycin decreased mTOR expression and altered MDDC trans infection ability although it failed to restore MDDC immunogenic potential. Indeed, rapamycin diminished CD83 expression on MDDC surface and increased CCR7 expression, indicating that the documented immunosuppressive property of this drug is associated with an impaired MDDC maturation. The second part of this master’s research project focused on the contribution of myeloid cells to HIV-1 reservoir persistence under ART. The objectives were to: (i) evaluate the presence of different forms of viral DNA in circulating monocytes from HIV-1 infected subjects and (ii) determine the viral integration and replication in monocytes-derived macrophages (MDM) from infected individuals receiving viral suppressive ART. Our results show that monocytes harbor early products from viral transcription (RU5 HIV-DNA) and that MDM support viral replication. Together, these very preliminary findings bring evidences that monocytes contribute to viral persistence under ART. Overall, our results indicate that HIV alters the immunogenic potential of DC and that rapamycin limits HIV trans-infection by DC. However, the fact that rapamycin fails to restore the immunogenic potential of DC stresses the need to identify additional strategies to manipulate the autophagy process for an optimal restoration of immune competence in HIV-infected subjects. Myeloid cells play a crucial role in HIV persistence and dissemination and thus must be aimed at when elaborating an antiviral therapy.
|
117 |
Improved inhalation therapies of brittle powdersCarvalho, Simone Raffa 03 March 2015 (has links)
Advancements in pulmonary drug delivery technologies have improved the use of dry powder inhalation therapy to treat respiratory and systemic diseases. Despite remarkable improvements in the development of dry powder inhaler devices (DPIs) and formulations in the last few years, an optimized DPI system has yet to be developed. In this work, we hypothesize that Thin Film Freezing (TFF) is a suitable technology to improve inhalation therapies to treat lung and systemic malignancies due to its ability to produce brittle powder with optimal aerodynamic properties. Also, we developed a performance verification test (PVT) for the Next Generation Cascade Impactor (NGI), which is one of the most important in vitro characterization methods to test inhalation. In the first study, we used TFF technology to produce amorphous and brittle particles of rapamycin, and compared the in vivo behavior by the pharmacokinetic profiles, to its crystalline counterpart when delivered to the lungs of rats via inhalation. It was found that TFF rapamycin presented higher in vivo systemic bioavailability than the crystalline formulation. Subsequently, we investigated the use of TFF technology to produce triple fixed dose therapy using formoterol fumarate, tiotropium bromide and budesonide as therapeutic drugs. We investigated applications of this technology to powder properties and in vitro aerosol performance with respect to single and combination therapy. As a result, the brittle TFF powders presented superior properties than the physical mixture of micronized crystalline powders, such as excellent particle distribution homogeneity after in vitro aerosolization. Lastly, we developed a PVT for the NGI that may be applicable to other cascade impactors, by investigating the use of a standardized pressurized metered dose inhaler (pMDI) with the NGI. Two standardized formulations were developed. Formulations were analyzed for repeatability and robustness, and found not to demonstrate significant differences in plate deposition using a single NGI apparatus. Variable conditions were introduced to the NGI to mimic operator and equipment failure. Introduction of the variable conditions to the NGI was found to significantly adjust the deposition patterns of the standardized formulations, suggesting that their use as a PVT could be useful and that further investigation is warranted. / text
|
118 |
The role of the peptidyl prolyl isomerase Rrd1 in the transcriptional stress responsePoschmann, Jeremie 08 1900 (has links)
La régulation de la transcription est un processus complexe qui a évolué pendant des millions
d’années permettant ainsi aux cellules de s’adapter aux changements environnementaux. Notre
laboratoire étudie le rôle de la rapamycine, un agent immunosuppresseur et anticancéreux, qui
mime la carence nutritionelle. Afin de comprendre les mécanismes impliqués dans la réponse a
la rapamycine, nous recherchons des mutants de la levure Saccaromyces cerevisiae qui ont un
phenotype altérée envers cette drogue. Nous avons identifié le gène RRD1, qui encode une
peptidyl prolyl isomérase et dont la mutation rend les levures très résistantes à la rapamycine et il
semble que se soit associé à une réponse transcriptionelle alterée. Mon projet de recherche de
doctorat est d’identifier le rôle de Rrd1 dans la réponse à la rapamycine. Tout d’abord nous
avons trouvé que Rrd1 interagit avec l’ARN polymérase II (RNAPII), plus spécifiquement avec
son domaine C-terminal. En réponse à la rapamycine, Rrd1 induit un changement dans la
conformation du domaine C-terminal in vivo permettant la régulation de l’association de RNAPII
avec certains gènes. Des analyses in vitro ont également montré que cette action est directe et
probablement liée à l’activité isomérase de Rrd1 suggérant un rôle pour Rrd1 dans la régulation
de la transcription. Nous avons utilisé la technologie de ChIP sur micropuce pour localiser Rrd1
sur la majorité des gènes transcrits par RNAPII et montre que Rrd1 agit en tant que facteur
d’élongation de RNAPII. Pour finir, des résultats suggèrent que Rrd1 n’est pas seulement
impliqué dans la réponse à la rapamycine mais aussi à differents stress environnementaux, nous
permettant ainsi d’établir que Rrd1 est un facteur d’élongation de la transcription requis pour la
régulation de la transcription via RNAPII en réponse au stress. / Transcriptional regulation is a complex process that has evolved over millions of years of
evolution. Cells have to sense environmental conditions and adapt to them by altering their
transcription. Herein, we study the role of rapamycin, an immunosuppressant and anticancer
molecule that mimics cellular starvation. To understand how the action of rapamycin is
mediated, we analyzed gene deletion mutants in the yeast Saccharomyces cerevisiae that have an
altered response to this drug. Deletion of RRD1, a gene encoding a peptidyl prolyl isomerase,
causes strong resistance to rapamycin and this was associated with a role of Rrd1 in the
transcriptional response towards rapamycin. The main focus of my PhD was therefore to unravel
the role of Rrd1 in response to rapamycin. First, we discovered that Rrd1 interacts with RNA
polymerase II (RNAPII), more specifically with its C-terminal domain and we showed that in
response to rapamycin, Rrd1 alters the structure of this C-terminal domain. This phenomenon
was confirmed to be directly mediated by Rrd1 in vitro, presumably through its peptidyl prolyl
isomerase activity. Further, we demonstrated that Rrd1 is capable of altering the occupancy of
RNAPII on genes in vivo and in vitro. With the use of ChIP on chip technology, we show that
Rrd1 is actually a transcription elongation factor that is associated with RNAPII on actively
transcribed genes. In addition, we demonstrate that Rrd1 is indeed required to regulate the
expression of a large subset of genes in response to rapamycin. This data let us propose a novel
mechanism by which Rrd1 regulates RNAPII during transcription elongation. Finally, we
provide evidence that Rrd1 is not only required for an efficient response towards rapamycin but
to a larger variety of environmental stress conditions, thus establishing Rrd1 as a transcriptional
elongation factor required to fine tune the transcriptional stress response of RNAPII.
|
119 |
Développement de méthodes analytiques pour la protéomique et l'identification de peptides MHC I issus de cellules leucémiquesFortier, Marie-Hélène January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
120 |
La Rapamycine inhibe l’expression de l’ARNm de l’ADAMTS-4 induit par les cytokines dans les chondrocytes articulairesKhalifé, Sarah 02 1900 (has links)
Introduction: Durant la pathogenèse d’ostéoarthrose (OA), les cytokines pro-inflammatoires IL-1β (Interleukin-1 beta) et TNF-α (Tumor necrosis factor alpha) stimulent la dégradation des agrécanes par l’aggrécanase-1 ou ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motif). Ces cytokines peuvent stimuler plusieurs voies de signalisation conduisant ainsi à l’augmentation de l’expression des ADAMTS dans les chondrocytes humains. Les TIMPs (tissue inhibitor of metalloproteinases) présentent des inhibiteurs endogènes de l’ADAMTS. Nous avons démontré que la Rapamycine (un immunosuppresseur et un inhibiteur du mamalian target of Rapamycin (mTOR)) peut avoir des effets bénéfiques dans cette pathologie. Notre étude examine l’effet de la Rapamycine sur l’expression de l’ADAMTS-4 induit par les cytokines, son implication dans certaines voies de signalisation, et son effet sur l’expression du TIMP-3.
Méthodes: Des chondrocytes normaux sont traités avec la Rapamycine seule ou stimulés aussi avec l’IL-1β et le TNF-α. Les effets de la Rapamycine sur l’expression de l’ADAMTS-4 et du TIMP-3 ont été étudiés par l’analyse RT-PCR et l’activité enzymatique a été étudiée par la technique d’ELISA. Les effets de la Rapamycine sur certaines voies de signalisation ont été étudiés par le Western blot.
Résultats: Nous avons trouvé que la Rapamycine inhibe l’expression de l’ARNm de l’ADAMTS-4 induit par les cytokines pro-inflammatoires dans les chondrocytes humains. L’activité enzymatique de l’ADAMTS-4 induit par l’IL-1β a été légèrement diminuée par la Rapamycine. En plus, cette dernière a montré de différents effets sur plusieurs voies de signalisation stimulées par l’IL-1β et le TNF-α telles que les voies des MAPKs (Mitogen activated protein kinase), de l’AKT, et de la p70 S6 kinase. La Rapamycine a inhibé partiellement l’activation de la phosphorylation de l’ERK1/2 MAPK (extracellular signal-regulated protein kinase MAPK) en présence du TNF-α seulement. En outre, la Rapamycine a inhibé la phosphorylation des protéines p38 MAPK, JNK (c-Jun N-terminal kinase), et AKT activée par l’IL-1β seulement. En plus, la phosphorylation de la protéine p70 S6K stimulée par l’IL-1β et le TNF-α a été inhibée par la Rapamycine. D’autre part, nous avons démontré que le niveau du TIMP-3 a été augmenté en présence de la Rapamycine.
Conclusion: Ces résultats suggèrent que la Rapamycine peut bloquer l’action de l’ADAMTS-4 via l’inhibition de l’activation des MAPKs, de l’AKT, et de la p70 S6K. La Rapamycine pourrait ainsi être considérée pour la prévention de la perte du cartilage chez les patients ostéoarthritiques. / Introduction: During the pathogenesis of osteoarthritis, the pro-inflammatory cytokines IL-1β (Interleukin-1 beta) and TNF-α (Tumor necrosis factor alpha) stimulate the degradation of aggrecans by aggrecanase-1 or ADAMTS-4 (A disintegrin and metalloproteinase with thrombospondin motif). These cytokines may stimulate several signaling pathways leading to an increased expression of ADAMTS-4 in human chondrocytes. The TIMPs (tissue inhibitor of metalloproteinases) are endogens inhibitors of ADAMTS-4. It has been shown that Rapamycin (an immunosuppressor and an inhibitor of the mammalian target of rapamycin or mTOR) may have beneficial effects in this pathology. Our study investigates the impact of Rapamycin on cytokine-induced expression of ADAMTS-4, his implication in certain signaling pathways, and his effects on the expression of TIMP-3.
Methods: Human chondrocytes were pretreated with different doses of Rapamycin either alone or stimulated with IL-β and TNF-α. The effect on ADAMTS-4 expression was examined by RT-PCR analysis and enzyme activity by ELISA. Impact of Rapamycin on the activation of different signaling pathways was measured by Western blot analysis.
Results: We have shown that Rapamycin down-regulated pro-inflammatory cytokines-induced ADAMTS-4 mRNA expression in human chondrocytes. The IL-1β-induced-enzymatic activity of ADAMTS-4 was slightly inhibited by Rapamycin. Furthermore, Rapamycin present different effects on pro-inflammatory cytokines-stimulated activation of certain signaling pathways such as MAPKs (Mitogen activated protein kinases), AKT, and P70 S6 kinase. Moreover, Rapamycin partially inhibits TNF-α-induced activation of phosphorylation of ERK1/2 MAPK (extracellular signal-regulated protein kinase MAPK). Thus, Rapamycin inhibit IL-1β-induced activation of phosphorylation of the proteins p38 MAPK, JNK (c-Jun N-terminal kinase), and AKT. Also, Rapamycin inhibit IL-1β and TNF-α-activation of phosphorylation of the protein p70 S6 kinase. In other way, we have shown that the level of TIMP-3 has been increased in the presence of Rapamycin.
Conclusion: These results suggest that Rapamycin down-regulates the expression of ADAMTS-4 by inhibiting the cytokine activation of MAPKs, AKT, and p70 S6 kinase. Thus Rapamycin could be considered as potential therapeutic agent for prevention of cartilage loss in patient with osteoarthritis.
|
Page generated in 0.0387 seconds