• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

En jämförelse av Eigenface- och Fisherface-metoden tillämpade i en Raspberry Pi 2 / A comparison between Eigenfaces and Fisherfaces implemented on a Raspberry Pi 2

Dahl, Dag, Gustaf, Sterne January 2016 (has links)
Syftet med rapporten är att visa möjligheten att använda Raspberry Pi 2 i ett ansiktsigenkänningssystem. Studien redogör för prestandaskillnader mellan Eigenface och Fisherfacemetoden. Studieförfattarna har genomfört en experimentell studie enligt en kvantitativ metod där tester utgör empirin. Resultatet från testerna kommer presenteras genom diagram och påvisa möjligheten att använda Raspberry Pi 2 som hårdvara i ett ansiktsigenkänningssystem. Genom samma testutförande kommer skillnader mellan igenkänningsmetoderna att påvisas. Studien visar att Raspberry Pi 2 är en lämplig kandidat att använda för mindre ansiktsigenkänningssystem. Vidare framgår det att Fisherface-metoden är det lämpligaste valet att använda vid implementation av systemet. / The purpose with this report is to demonstrate the possibility to use Raspberry Pi 2 as hardware in a face recognition system. The study will show performance differences regarding the Eigenface- and Fisherface-method. To demonstrate the possibility the authors have done tests using an experimental study and quantitative method. To review the tests and to understand the result a qualitative literature review was taken. The tests will be presented as graphs to show the possibility to use Raspberry Pi 2 as hardware in a face recognition system. The same goes for the comparison of the chosen algorithms. The work indicates that Raspberry Pi 2 is a possible candidate to use for smaller face recognition systems. There is also an indication that the Fisherface method is the better choice for face recognition.
2

Zabezpečení komunikace a ochrana dat v Internetu věcí / Secure Communication and Data Protection in the Internet of Things

Chadim, Pavel January 2018 (has links)
This Master's thesis „Secure communication and data protection in the internet of things“ is dealing with crypthografy and crypthographic libraries, which are compared with eachother according to supporting algorithm and standard. For comparing therewere used following libraries: openSSL, wolfSSL, nanoSSL and matrixSSL. Practical part of the thesis is focused on testing the productivity of each ciphers and protocols of openSSL and wolfSSL libraries on RaspberryPi 2 device. Further, the thesis shows the design of communication scenario client-server in the Internet of Things (IoT). Simple authentication protocol client-server was implemented and simulated on RaspberryPi 2 device.
3

Automatické polohování zpětného zrcátka / Automatic positioning of the rear view mirror

Návara, Marek January 2016 (has links)
This thesis solves design of functional device that will be able to automatically positioning back view mirrors according to the positio of driver face. Measuring position of the face provides stereovision of two webacams. The device is based on a computer Raspberry Pi 2 with designed expansion board. The created prototype can follow set view int the mirror with accuracy up to 7 cm (horizontally up to 5cm) in level of rear corner of a car. The results of this project validate design of automatic positioning mirror and it can be basis for specific implementations of the device in car.
4

IDS on Raspberry Pi : A Performance Evaluation / IDS på Raspberry Pi : En prestandautvärdering

Aspernäs, Andreas, Simonsson, Thommy January 2015 (has links)
This is a report on the possibility of using a Raspberry Pi as an intrusion detection system in a home environment to increase network security. The focus of this study was on how well two different generations of Raspberry Pi would be able to  handle network traffic while acting as an intrusion detection system. To examine this a testing environment was set up containing two workstation computers connected to a Raspberry Pi, each computer hosting a virtual machine. Tests measuring the network throughput as well as the CPU and memory usage were performed on each of the Raspberry Pi devices. Two models of Raspberry Pis were used; Raspberry Pi model B+ and Raspberry Pi 2 model B; each of them running the operating system Arch Linux ARM. The results of these tests were that both of the Raspberry Pis could be used as an intrusion detection system but has some limitations that could impede usage depending on the requirements of the user. Raspberry Pi 2 model B show benefits of its updated hardware by suffering lower throughput degradation than Raspberry Pi model B+, while using less of it's total CPU and memory capacity. / Den här rapporten behandlar möjligheten att använda en Raspberry Pi som ett intrångdetekteringssystem i en hemma miljö för att öka nätverkssäkerheten. Fokusen i den här studien ligger på hur väl de två senaste generationerna av Raspberry Pi skulle kunna hantera nätverkstrafik samtidigt som den undersöker nätverkstrafiken och söker efter hot. För att kontrollera hur väl en Raspberry Pi kan fungera som ett intrångdetekteringssystem har en laborationsmiljö upprättats bestående av två fysiska maskiner som vardera används för att virtualisera en virtuell maskin. Tester för att mäta datagenomströmning, processor och minnesbelastning utfördes på var och en av Raspberry Pi. Två modeller av Raspberry Pi användes; Raspberry Pi model b+ och Raspberry Pi 2 model b, både körde operativsystemet Arch Linux ARM. Resultatet av testerna visade att det går att använda båda enheterna för att upprätta ett intrångdetekteringssystem, men det finns vissa begränsningar i enheterna vilket kan begränsa implementationsmöjligheterna. Raspberry Pi 2 model B uppvisade bättre resultat i form av att den är lägre belastad och har en högre datagenomströmning till skillnad från Raspberry Pi model B+. Raspberry Pi 2 model B har nyare och snabbare hårdvara vilket är den troliga orsaken till att den presterar bättre.
5

Datalogger s rozhraním Ethernet / Datalogger with Ethernet

Orávik, Tomáš January 2016 (has links)
Thesis deals with Datalogger with Ethernet interface controlled by Raspberry Pi 2. Datalogger is equipped with eight digital inputs and three analogue inputs. It allows storage of measured data into the database on the microSD card. It communicates over an Ethernet interface on the Raspberry Pi. The administration and control of the datalogger is possible trought a web server.

Page generated in 0.0349 seconds