• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A rational SHIRA method for the Hamiltonian eigenvalue problem

Benner, Peter, Effenberger, Cedric 07 January 2009 (has links) (PDF)
The SHIRA method of Mehrmann and Watkins belongs among the structure preserving Krylov subspace methods for solving skew-Hamiltonian eigenvalue problems. It can also be applied to Hamiltonian eigenproblems by considering a suitable transformation. Structure induced shift-and-invert techniques are employed to steer the algorithm towards the interesting region of the spectrum. However, the shift cannot be altered in the middle of the computation without discarding the information that has been accumulated so far. This paper shows how SHIRA can be combined with ideas from Ruhe's Rational Krylov algorithm to yield a method that permits an adjustment of shift after every step of the computation, adding greatly to the flexibility of the algorithm. We call this new method rational SHIRA. A numerical example is presented to demonstrate its efficiency.
2

A rational SHIRA method for the Hamiltonian eigenvalue problem

Benner, Peter, Effenberger, Cedric 07 January 2009 (has links)
The SHIRA method of Mehrmann and Watkins belongs among the structure preserving Krylov subspace methods for solving skew-Hamiltonian eigenvalue problems. It can also be applied to Hamiltonian eigenproblems by considering a suitable transformation. Structure induced shift-and-invert techniques are employed to steer the algorithm towards the interesting region of the spectrum. However, the shift cannot be altered in the middle of the computation without discarding the information that has been accumulated so far. This paper shows how SHIRA can be combined with ideas from Ruhe's Rational Krylov algorithm to yield a method that permits an adjustment of shift after every step of the computation, adding greatly to the flexibility of the algorithm. We call this new method rational SHIRA. A numerical example is presented to demonstrate its efficiency.

Page generated in 0.0959 seconds