• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils

Benner, P., Mehrmann, V., Xu, H. 30 October 1998 (has links) (PDF)
A new method is presented for the numerical computation of the generalized eigen- values of real Hamiltonian or symplectic pencils and matrices. The method is strongly backward stable, i.e., it is numerically backward stable and preserves the structure (i.e., Hamiltonian or symplectic). In the case of a Hamiltonian matrix the method is closely related to the square reduced method of Van Loan, but in contrast to that method which may suffer from a loss of accuracy of order sqrt(epsilon), where epsilon is the machine precision, the new method computes the eigenvalues to full possible accuracy.
2

A rational SHIRA method for the Hamiltonian eigenvalue problem

Benner, Peter, Effenberger, Cedric 07 January 2009 (has links) (PDF)
The SHIRA method of Mehrmann and Watkins belongs among the structure preserving Krylov subspace methods for solving skew-Hamiltonian eigenvalue problems. It can also be applied to Hamiltonian eigenproblems by considering a suitable transformation. Structure induced shift-and-invert techniques are employed to steer the algorithm towards the interesting region of the spectrum. However, the shift cannot be altered in the middle of the computation without discarding the information that has been accumulated so far. This paper shows how SHIRA can be combined with ideas from Ruhe's Rational Krylov algorithm to yield a method that permits an adjustment of shift after every step of the computation, adding greatly to the flexibility of the algorithm. We call this new method rational SHIRA. A numerical example is presented to demonstrate its efficiency.
3

HAMEV and SQRED: Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices Using Van Loanss Square Reduced Method

Benner, P., Byers, R., Barth, E. 30 October 1998 (has links) (PDF)
This paper describes LAPACK-based Fortran 77 subroutines for the reduction of a Hamiltonian matrix to square-reduced form and the approximation of all its eigenvalues using the implicit version of Van Loan's method. The transformation of the Hamilto- nian matrix to a square-reduced Hamiltonian uses only orthogonal symplectic similarity transformations. The eigenvalues can then be determined by applying the Hessenberg QR iteration to a matrix of half the order of the Hamiltonian matrix and taking the square roots of the computed values. Using scaling strategies similar to those suggested for algebraic Riccati equations can in some cases improve the accuracy of the computed eigenvalues. We demonstrate the performance of the subroutines for several examples and show how they can be used to solve some control-theoretic problems.
4

A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils

Benner, P., Mehrmann, V., Xu, H. 30 October 1998 (has links)
A new method is presented for the numerical computation of the generalized eigen- values of real Hamiltonian or symplectic pencils and matrices. The method is strongly backward stable, i.e., it is numerically backward stable and preserves the structure (i.e., Hamiltonian or symplectic). In the case of a Hamiltonian matrix the method is closely related to the square reduced method of Van Loan, but in contrast to that method which may suffer from a loss of accuracy of order sqrt(epsilon), where epsilon is the machine precision, the new method computes the eigenvalues to full possible accuracy.
5

HAMEV and SQRED: Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices Using Van Loanss Square Reduced Method

Benner, P., Byers, R., Barth, E. 30 October 1998 (has links)
This paper describes LAPACK-based Fortran 77 subroutines for the reduction of a Hamiltonian matrix to square-reduced form and the approximation of all its eigenvalues using the implicit version of Van Loan's method. The transformation of the Hamilto- nian matrix to a square-reduced Hamiltonian uses only orthogonal symplectic similarity transformations. The eigenvalues can then be determined by applying the Hessenberg QR iteration to a matrix of half the order of the Hamiltonian matrix and taking the square roots of the computed values. Using scaling strategies similar to those suggested for algebraic Riccati equations can in some cases improve the accuracy of the computed eigenvalues. We demonstrate the performance of the subroutines for several examples and show how they can be used to solve some control-theoretic problems.
6

A rational SHIRA method for the Hamiltonian eigenvalue problem

Benner, Peter, Effenberger, Cedric 07 January 2009 (has links)
The SHIRA method of Mehrmann and Watkins belongs among the structure preserving Krylov subspace methods for solving skew-Hamiltonian eigenvalue problems. It can also be applied to Hamiltonian eigenproblems by considering a suitable transformation. Structure induced shift-and-invert techniques are employed to steer the algorithm towards the interesting region of the spectrum. However, the shift cannot be altered in the middle of the computation without discarding the information that has been accumulated so far. This paper shows how SHIRA can be combined with ideas from Ruhe's Rational Krylov algorithm to yield a method that permits an adjustment of shift after every step of the computation, adding greatly to the flexibility of the algorithm. We call this new method rational SHIRA. A numerical example is presented to demonstrate its efficiency.

Page generated in 0.0644 seconds