• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspects of quantum radiation

Schützhold, Ralf. Unknown Date (has links) (PDF)
Techn. University, Diss., 2001--Dresden.
2

Einfluß von Gravitation und Trägheit auf die Interferenz von Quantenfeldern

Marzlin, Karl-Peter. Unknown Date (has links)
Universiẗat, Diss., 1994--Konstanz.
3

Local Thermal Equilibrium on Curved Spacetimes and Linear Cosmological Perturbation Theory

Eltzner, Benjamin 16 July 2013 (has links) (PDF)
In this work the extension of the criterion for local thermal equilibrium by Buchholz, Ojima and Roos to curved spacetime as introduced by Schlemmer is investigated. Several problems are identified and especially the instability under time evolution which was already observed by Schlemmer is inspected. An alternative approach to local thermal equilibrium in quantum field theories on curved spacetimes is presented and discussed. In the following the dynamic system of the linear field and matter perturbations in the generic model of inflation is studied in the view of ambiguity of quantisation. In the last part the compatibility of the temperature fluctuations of the cosmic microwave background radiation with local thermal equilibrium is investigated. / In dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buchholz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörungen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hintergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht überprüft.
4

Quantum Field Theory on Non-commutative Spacetimes

Borris, Markus 27 April 2011 (has links) (PDF)
The time coordinate is a common obstacle in the theory of non-commutative (nc.) spacetimes. Despite that, this work shows how the interplay between quantum fields and an underlying nc. spacetime can still be analyzed, even for the case of nc. time. This is done for the example of a general Moyal-type external potential scattering of the Dirac field in Moyal-Minkowski spacetime. The spacetime is a rare example of a Lorentzian non-compact nc. geometry. Elements of the associated spectral function algebra are shown to be operationally involved at the level of quantum field operators by Bogoliubovs formula. Furthermore, a similar task is attacked in the case of locally nc. spacetimes. An explicit star-product is constructed by a method of Kontsevich. It implements a decay of non-commutativity with increasing distance. This behavior should benefit the technical side - diverse interesting formal attempts are discussed. It is striven for unification of several toy models of nc. spacetimes and a general strategy to define quantum field operators. Within the latter one has to implement the usual quantum behavior as well as a new kind of spacetime behavior. It is shown how this two-fold character causes key difficulties in understanding.
5

Quantum Field Theory on Non-commutative Spacetimes

Borris, Markus 06 April 2011 (has links)
The time coordinate is a common obstacle in the theory of non-commutative (nc.) spacetimes. Despite that, this work shows how the interplay between quantum fields and an underlying nc. spacetime can still be analyzed, even for the case of nc. time. This is done for the example of a general Moyal-type external potential scattering of the Dirac field in Moyal-Minkowski spacetime. The spacetime is a rare example of a Lorentzian non-compact nc. geometry. Elements of the associated spectral function algebra are shown to be operationally involved at the level of quantum field operators by Bogoliubovs formula. Furthermore, a similar task is attacked in the case of locally nc. spacetimes. An explicit star-product is constructed by a method of Kontsevich. It implements a decay of non-commutativity with increasing distance. This behavior should benefit the technical side - diverse interesting formal attempts are discussed. It is striven for unification of several toy models of nc. spacetimes and a general strategy to define quantum field operators. Within the latter one has to implement the usual quantum behavior as well as a new kind of spacetime behavior. It is shown how this two-fold character causes key difficulties in understanding.
6

Local Thermal Equilibrium on Curved Spacetimes and Linear Cosmological Perturbation Theory

Eltzner, Benjamin 29 May 2013 (has links)
In this work the extension of the criterion for local thermal equilibrium by Buchholz, Ojima and Roos to curved spacetime as introduced by Schlemmer is investigated. Several problems are identified and especially the instability under time evolution which was already observed by Schlemmer is inspected. An alternative approach to local thermal equilibrium in quantum field theories on curved spacetimes is presented and discussed. In the following the dynamic system of the linear field and matter perturbations in the generic model of inflation is studied in the view of ambiguity of quantisation. In the last part the compatibility of the temperature fluctuations of the cosmic microwave background radiation with local thermal equilibrium is investigated.:1. Introduction 5 2. Technical Background 10 2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime . . . . . . 10 2.1.1. Construction of the Scalar Field . . . . . . . . . . . . . . . . . 10 2.1.2. Algebra of Wick Products . . . . . . . . . . . . . . . . . . . . 13 2.1.3. Local Covariance Principle . . . . . . . . . . . . . . . . . . . . 17 2.2. Local Thermal Equilibirum . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1. Global Thermodynamic Equilibrium - KMS States . . . . . . 21 2.2.2. Local Thermal Observables . . . . . . . . . . . . . . . . . . . 24 2.2.3. LTE on Flat Spacetime . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4. LTE in Cosmological Spacetimes . . . . . . . . . . . . . . . . 32 2.3. Linear Scalar Cosmological Perturbations . . . . . . . . . . . . . . . . 34 2.3.1. Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . 35 2.3.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . 38 2.3.3. Technical Framework and Formulae . . . . . . . . . . . . . . . 40 2.3.4. The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 46 2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations . . . . . . 49 3. Towards a Refinement of the LTE Condition on Curved Spacetimes 54 3.1. Non-Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.1. Commutator Distribution . . . . . . . . . . . . . . . . . . . . 55 3.1.2. KMS Two-Point Function . . . . . . . . . . . . . . . . . . . . 57 3.1.3. Balanced Derivatives . . . . . . . . . . . . . . . . . . . . . . . 61 3.2. Conformally Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . 65 3.2.1. Conformal KMS States . . . . . . . . . . . . . . . . . . . . . . 66 3.2.2. Extrinsic LTE in de Sitter Spacetime . . . . . . . . . . . . . . 71 3.3. Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.1. Properties of the Model . . . . . . . . . . . . . . . . . . . . . 78 3.3.2. Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . 80 3.3.3. Thermal Observables . . . . . . . . . . . . . . . . . . . . . . . 82 3.4. Towards an Alternative Concept . . . . . . . . . . . . . . . . . . . . . 91 3.4.1. Problems and Open Questions Concerning LTE . . . . . . . . 92 3.4.2. Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . 94 3.4.3. Positivity Inequalities . . . . . . . . . . . . . . . . . . . . . . . 96 3.4.4. Macroobservable Interpretation . . . . . . . . . . . . . . . . . 100 3.5. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4. Cosmological Perturbation Theory 105 4.1. Dynamics of Perturbations in Inflation . . . . . . . . . . . . . . . . . 106 4.1.1. CCR Quantisation is Ambiguous . . . . . . . . . . . . . . . . 106 4.1.2. Canonical Symplectic Form . . . . . . . . . . . . . . . . . . . 111 4.1.3. The Algebraic Point of View . . . . . . . . . . . . . . . . . . . 117 4.2. LTE States in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 120 4.2.1. The Link to Fluid Dynamics . . . . . . . . . . . . . . . . . . . 120 4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect . . . . . . . . 125 5. Conclusion and Outlook 131 A. Technical proofs 136 A.1. Proof of Lemma 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 A.2. Proof of Lemma 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 A.3. Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.4. Idea of Proof for Conjecture 3.4.3 . . . . . . . . . . . . . . . . . . . . 144 B. Introduction to Probability Theory 146 Bibliography 150 Correction of Lemma 3.1.2 155 / In dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buchholz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörungen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hintergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht überprüft.:1. Introduction 5 2. Technical Background 10 2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime . . . . . . 10 2.1.1. Construction of the Scalar Field . . . . . . . . . . . . . . . . . 10 2.1.2. Algebra of Wick Products . . . . . . . . . . . . . . . . . . . . 13 2.1.3. Local Covariance Principle . . . . . . . . . . . . . . . . . . . . 17 2.2. Local Thermal Equilibirum . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1. Global Thermodynamic Equilibrium - KMS States . . . . . . 21 2.2.2. Local Thermal Observables . . . . . . . . . . . . . . . . . . . 24 2.2.3. LTE on Flat Spacetime . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4. LTE in Cosmological Spacetimes . . . . . . . . . . . . . . . . 32 2.3. Linear Scalar Cosmological Perturbations . . . . . . . . . . . . . . . . 34 2.3.1. Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . 35 2.3.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . 38 2.3.3. Technical Framework and Formulae . . . . . . . . . . . . . . . 40 2.3.4. The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 46 2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations . . . . . . 49 3. Towards a Refinement of the LTE Condition on Curved Spacetimes 54 3.1. Non-Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.1. Commutator Distribution . . . . . . . . . . . . . . . . . . . . 55 3.1.2. KMS Two-Point Function . . . . . . . . . . . . . . . . . . . . 57 3.1.3. Balanced Derivatives . . . . . . . . . . . . . . . . . . . . . . . 61 3.2. Conformally Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . 65 3.2.1. Conformal KMS States . . . . . . . . . . . . . . . . . . . . . . 66 3.2.2. Extrinsic LTE in de Sitter Spacetime . . . . . . . . . . . . . . 71 3.3. Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.1. Properties of the Model . . . . . . . . . . . . . . . . . . . . . 78 3.3.2. Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . 80 3.3.3. Thermal Observables . . . . . . . . . . . . . . . . . . . . . . . 82 3.4. Towards an Alternative Concept . . . . . . . . . . . . . . . . . . . . . 91 3.4.1. Problems and Open Questions Concerning LTE . . . . . . . . 92 3.4.2. Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . 94 3.4.3. Positivity Inequalities . . . . . . . . . . . . . . . . . . . . . . . 96 3.4.4. Macroobservable Interpretation . . . . . . . . . . . . . . . . . 100 3.5. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4. Cosmological Perturbation Theory 105 4.1. Dynamics of Perturbations in Inflation . . . . . . . . . . . . . . . . . 106 4.1.1. CCR Quantisation is Ambiguous . . . . . . . . . . . . . . . . 106 4.1.2. Canonical Symplectic Form . . . . . . . . . . . . . . . . . . . 111 4.1.3. The Algebraic Point of View . . . . . . . . . . . . . . . . . . . 117 4.2. LTE States in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 120 4.2.1. The Link to Fluid Dynamics . . . . . . . . . . . . . . . . . . . 120 4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect . . . . . . . . 125 5. Conclusion and Outlook 131 A. Technical proofs 136 A.1. Proof of Lemma 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 A.2. Proof of Lemma 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 A.3. Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.4. Idea of Proof for Conjecture 3.4.3 . . . . . . . . . . . . . . . . . . . . 144 B. Introduction to Probability Theory 146 Bibliography 150 Correction of Lemma 3.1.2 155

Page generated in 0.027 seconds