• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 11
  • 8
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 203
  • 203
  • 52
  • 32
  • 24
  • 19
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Study of Reaction Kinetics for Elemental Mercury Vapor Oxidation for Mercury Emission Control

Sriram, Vishnu January 2017 (has links)
No description available.
112

Mass Spectrometric Study of Trace Chemical Analysis, Methanol Electro-Oxidation, and Enzymatic Reaction Kinetics

Cheng, Si January 2016 (has links)
No description available.
113

Reaction kinetics and mechanisms of low temperature SO <inf>2</inf>removal by dry calcium-based sorbents

Ben-Said, Lotfi January 1993 (has links)
No description available.
114

High Temperature Corrosion of Single Crystal Sapphire and Zirconia in Coal Gasification and Commercial Glass Environments

Dicic, Zorana 16 July 2004 (has links)
To meet the requirements of precise temperature monitoring at high temperatures in extremely corrosive environments, such as in coal gasifiers, a new sensor technology has been developed. This optical, ultra high temperature measurement system utilizes single crystal sapphire as a sensing element. A series of experiments was performed to determine the corrosion resistance of single crystal sapphire and single crystal fully stabilized cubic zirconia at high temperatures in coal slag and soda lime glass. The amount of corrosion of sapphire and zirconia in corrosive slags was measured at 1200°C, 1300°C, and 1400°C for different exposure times. The microstructural features at the interface of sapphire and zirconia were investigated using SEM and EDX analysis. The experimental measurements as well as SEM micrographs show very little or no degradation of sapphire and zirconia samples in corrosive slags. An interesting phenomenon was observed in the EDX scans of sapphire in the coal slag: the iron from the slag appears to have completely separated from the silicon and deposited at the sapphire surface. This interesting observation can be further explored to study whether this iron layer can be used to control the corrosion of sapphire. / Master of Science
115

Nonadiabatic transition-state theory: A Monte Carlo Study of competing bond fission processes in bromoacetyl chloride

Marks, Alison J. January 2001 (has links)
No / Nonadiabatic Monte Carlo transition-state theory is used to explore competing C¿Cl and C¿Br bond fission processes in a simple model of 1[n,pi*(CO)] photoexcited bromoacetyl chloride. Morse potentials are used to represent bond stretching coordinates, and the positions and magnitudes of nonadiabatic coupling between excited state potentials are modeled using ab initio data. The main effect of nonadiabaticity is to favor C¿Cl fission over C¿Br, despite a larger barrier to C¿Cl dissociation. The absolute values of the rate constants are smaller than observed experimentally, but the calculated branching ratios are close to the experimental value. For C¿Cl fission, it is shown that the minimum energy crossing point is not sufficient to describe the rate constant, suggesting that care must be taken when using alternative models which make this assumption.
116

Parâmetros relacionados à cinética de reação e tensão de polimerização de compósitos restauradores / PARAMETERS RELATED TO REACTION KINETICS AND POLYMERIZATION STRESS OF RESTORATIVE COMPOSITES

Pfeifer, Carmem Silvia Costa 27 June 2007 (has links)
Proposição: O objetivo deste estudo foi avaliar como a contração volumétrica (CV), o grau de conversão (GC), a taxa máxima de polimerização (RPmax) e a tensão de polimerização (TPmax) de dois compósitos experimentais são influenciados pela concentração de fotoiniciadores na matriz e pela irradiância aplicada na fotopolimerização. Material e métodos: Duas séries de monômeros foram formuladas, com partes iguais em peso dos seguintes monômeros: série B= Bis-GMA/ TEGDMA; série U= Bis-GMA/ UDMA / TEGDMA. Essas séries foram combinadas a três níveis de fotoiniciadores, num total de seis materiais experimentais, com a concentração em porcentagem de peso de uma amina terciária (EDMAB) e canforoquinona (CQ), respectivamente: alta (H)= 0,8 / 1,6; intermediária (M)= 0,4 / 0,8 e baixa (L)= 0,2 / 0,4. A todas as misturas, 75% e peso de vidro de estrôncio e 5% em peso de OX-50 (sílica coloidal) foram adicionados. O estudo foi dividido em três módulos: no primeiro, os seis compósitos foram testados quanto aos parâmetros descritos acima para a mesma dose de energia aplicada. No segundo, os mesmos materiais foram testados com a dose de energia ajustada de acordo com a concentração de fotoiniciadores de modo que todos os níveis atingissem graus de conversão semelhantes. No terceiro módulo, os materiais com a concentração \"M\" de fotoiniciadores foram submetidos a uma de três irradiâncias: 200, 400 ou 600 mW/cm2, com o tempo de exposição ajustado para que a dose de energia fosse mantida constante. CV foi registrada em um dilatômetro de mercúrio, GC foi avaliado através de FTIR, RPmax foi obtida através de um DSC 7 e a TP foi avaliada em um aparato de compliance controlado, descrito por Sakaguchi et al., 2004. Resultados: Em todos os módulos, não houve interação entre os fatores e assim, as médias foram agrupadas por série de monômeros e nível de fotoiniciadores (módulos 1 e 2) ou nível de irradiância (módulo 3). No módulo 1, as concentrações \"H\" e \"M\" apresentaram GC semelhante, ambas estatisticamente superiores à apresentada pelo grupo com o menor conteúdo de CQ/amina. A série U apresentou GC superior à da série B. RPmax aumentou significantemente com a concentração de fotoiniciadores entre cada um dos níveis estudados (p<0,001), e foi maior para a série U (p<0,05). O grupo de concentração \"H\" apresentou valores de TPmax maiores do que os grupos de concentração \"L\", enquanto que \"M\" apresentou valores de TPmax semelhantes aos dos outros dois (p<0,001). As séries B e U apresentaram TPmax equivalente (p>0,05). CV foi maior para \"L\", estatisticamente diferente das outras duas. A série B apresentou maior CV (p<0,05 para ambos os fatores). No módulo 2, o GC não foi influenciado pela concentração de fotoiniciadores (p>0,05). A série U apresentou maior GC comparado com a série B (p<0,001). RPmax aumentou com a concentração de fotoiniciadores entre cada um dos níveis estudados e foi maior para a série U (p<0,001 para ambos). TPmax não foi influenciada pela concentração de fotoiniciadores (p>0,05). A série B apresentou maior TPmax comparado com a série U (p<0,001). CV foi maior para \"L\", estatisticamente diferente das outras duas. A série B apresentou maiores valores de CV (p<0,001 para ambos os fatores). No módulo 3, GC variou significantemente apenas com a irradiância (p<0,001), sendo que os grupos de alta irradiância apresentaram valores estatisticamente mais baixos comparados aos níveis de irradiância médio e baixo. RPmax, aumentou com a irradiância e foi maior para a série U (p<0,001 para ambos). A série B apresentou valores de TPmax do que os da série U. CV não foi influenciada pela irradiância (p=0,442). A série B apresentou CV estatisticamente maior que a série U (p<0,001). Conclusões: De maneira geral, podemos dizer que CV, GC e RPmax mostraram uma interação bastante complexa e, nas condições deste estudo, não foi possível determinar a contribuição relativa de cada um destes fatores no desenvolvimento da tensão de polimerização. No entanto, parece haver uma tendência de TPmax ser influenciada mais pronunciadamente pelo GC ou CV do que pela RPmax, como demonstrado nos módulos 2 e 3. / Proposition: The objective of this study was to evaluate how the volumetric shrinkage (VS), degree of conversion (DC), maximum rate of reaction (RPmax), polymerization stress (PSmax) and maximum rate of stress development (RSmax) of two experimental composites are influenced by the photoinitiator concentration ([photo]) and by the irradiance. Methods and materials: Bis-GMA/TEGDMA (B series) and Bis GMA/UDMA/TEGDMA (U series) were mixed in equal parts in weight. A tertiary amine (EDMAB) and camphoroquinone (CQ), respectively, were added in three concentrations: high (H)= 0.8/1.6; intermediate (M)= 0.4/0.8 and low (L)= 0.2/0.4 (in wt%). In all mixtures, 80 wt% filler was added. The study was divided in three sections: I) composites were photoactivated with 13 J/cm2. II) radiant exposure was adjusted so that all [photo] would achieve similar DC. III) [photo] \"M\" materials were submitted to three irradiances: 200 (L), 400 (I) or 600 (H) mW/cm2, with exposure time adjusted to convey the same radiant exposure. VS was registered in a mercury dilatometer, DC was evaluated by FTIR spectroscopy, RPmax was obtained in a DSC 7 and PSmax was evaluated in a controlled compliance device, described previously (SAKAGUCHI; WILTBANK; MURCHISON, 2004a). Results: Because no interaction between the factors was observed (except for RSmax in sections I and III), means were pooled for monomer series and [photo] (sections I and II) or irradiance (section III). I) concentrations \"H\" and \"M\" presented similar DC, both statistically superior to \"L\" (p<0.001). U series presented higher DC compared to B series. RPmax increased significantly with photoinitiator concentration between each of the studied levels (p<0.001), and was higher for U series (p<0.05). VS was higher for \"L\", statistically different than the other two (p<0.05). B series presented higher VS (p<0.05). The group with \"H\" concentration presented PSmax higher than \"L\", while \"M\" presented values similar to both (p<0.001). B and U series presented equivalent PSmax (p=0.284). For B series, RSmax increased 100% between the lower e intermediate [photo]. For U series, this increase was only around 50%. II) DC was not influenced by [photo] (p=0.388). U series presented higher DC compared to B series (p<0.001). RPmax increased with [photo] between all studied levels and was higher for U series (p<0.001 for both). VS was higher for \"L\", statistically different from the other two (p<0.001). B series presented higher VS (p<0.001). PSmax was not influenced by the photoinitiator concentration (p=0119). B series presented higher PSmax compared to U series (p<0.001). RSmax increased with [photo] and was higher for U series (p<0.001). III) High irradiance groups presented statistically lower DC compared to the other irradiance levels (p<0.001). Monomer series did not influence DC (p=0.793). RPmax increased with the irradiance and was higher for U series (p<0.001 for both). VS was not influenced by the irradiance (p=0.442). B series presented VS statistically higher than U series (p<0.001). \"H\" groups presented higher PSmax compared to \"L\". \"M\" presented PSmax similar to both (p<0.001). B series presented PSmax higher than U series. While no difference in RSmax between irradiance leves was observed for B series, RSmax increased with the irradiance for U series. Conclusions: There seems to be a trend for PSmax to be influenced more markedly by DC or VS than by RPmax. However, VS, DC and RPmax showed a quite complex interaction and, in the conditions of the present study, it was not possible to determine the relative contribution of each of these factors on stress development.
117

Kinetics of the Hydrodechlorination Reaction of Chlorinated Compounds on Palladium Catalysts

Chen, Nan 23 August 2003 (has links)
" Hydrodechlorination is the reaction of a chlorinated organic compound (R-Cl) with hydrogen to form a carbon-hydrogen bond and HCl: R-Cl + H2 = R-H + HCl. This reaction is used in refrigerant manufacturing, industrial by-product reclamation and waste management. These practical applications require in-depth understanding of hydrodechlorination reaction. In this research work, we studied four families of chlorinated compounds; CF3CF3-xClx(x=1-3), CH4-xClx (x=1-4), CF4-xClx (x=1-4) and dichloropropanes (1,1-, 1,2-, 1,3-, 2,2-), on supported palladium catalysts to create a theory capable of predicting the hydrodechlorination rate on chlorinated compounds and to explore the reaction mechanism. A possible set of elementary reaction steps of hydrodechlorination reaction was proposed from our kinetics study of all these compounds. In this set of reaction steps, the irreversible scission of the first C-Cl bond in a chlorinated compound was proposed to be the rate-determining step; gas phase H2 and HCl were suggested to be in equilibrium with surface H and Cl species; adsorbed Cl was assumed to be the most abundant surface intermediate. The overall rate of hydrodechlorination reaction could be derived from these reaction steps as r=k'[R-Cl]/(1+K'[HCl]/[H2]0.5). In this rate equation, k'is the product of the adsorption equilibrium constant of the chlorinated compound on catalyst surface times the rate constant for the scission of the first C-Cl bond scission step, and K'is the square root of the equilibrium constant for the equilibrium between H2, HCl and their corresponding surface species: 2HCl + 2* = H2 + 2Cl*. The hydrodechlorination reaction of CF3CFCl2 was performed in the presence of H37Cl to study the reversibility of C-Cl bond scission, and the removal of the first Cl atom from CF3CFCl2 was found to be an irreversible step. Hydrodechlorination experiments of CF3CFCl2 with D2 and HCl mixture revealed that D2 and HCl were in equilibrium with surface adsorbed hydrogen and chlorine during reaction. The forward rate and reverse rate of this equilibrium were at least 400 times higher than the overall hydrodechlorination rate. This result supported the assumption of equilibrium for 2HCl + 2* = H2 + 2Cl*. Additionally, the activation energy for the rate determining step was extracted from hydrodechlorination reaction kinetics results of CH4-xClx (x=1-4), CF4-xClx (x=1-4) and dichloropropanes (1,1-, 1,2-, 1,3-, 2,2-) compounds. It was found that for each of the series compounds, a linear relationship existed between C-Cl bond scission activation energy and gas phase C-Cl bond strength. This observation corroborates our assumption that the removal of the first Cl atom from a chlorinated compound is the rate-determining step in the hydrodechlorination reaction. Thus, all kinetic and isotope experimental results obtained from this study are consistent with the proposed reaction steps for the chlorinated compounds tested. This set of reaction steps can also be used to predict the hydrodechlorination reaction rate of a chlorinated compound, once its gas phase C-Cl bond energy is calculated and the turnover rate of a reference chlorinated compound with similar structure is known. Some work has been done to study hydrodechlorination reaction steps and reaction intermediates beyond the rate-limiting step. Isotope tracing experiments with D2 indicated that CH3-, CH2- groups adjacent to a C-Cl bond could undergo deuterium exchange. The study of reactions steps using ab initio methods, including calculation of rate constants, is also under way. Calculations for the CH4-xClx (x=1-4) family showed that the heat of adsorption and C-Cl bond dissociation energy on a Pd surface were linearly related to their gas phase C-Cl bond strength."
118

Experimental and Computational Studies on Ruthenium- and Manganese-Catalyzed C-H and C-C Activation

Rogge, Torben 30 October 2019 (has links)
No description available.
119

Numerical Simulation of Flow in Ozonation Process

Zhang, Jie 01 May 2014 (has links)
In the last two decades, Computational Fluid Dynamics (CFD) has shown great potential as a powerful and cost-efficient tool to troubleshoot existing disinfection contactors and improve future designs for the water and wastewater treatment utilities. In the first part of this dissertation two CFD simulation methodologies or strategies for computing turbulent flow are evaluated in terms of the predicted hydraulic performance of contactors. In the LES (large eddy simulation) methodology, the more energetic, larger scales of the turbulence are explicitly computed or resolved by the grid. In the less computationally intensive RANS (Reynolds-averaged Navier-Stokes) methodology, only the mean component of the flow is resolved and the effect of the unresolved turbulent scales is accounted for through a turbulence model. For baffled contactors, RANS performs on par with the LES in predicting hydraulic performance indices. In this type of contactors, hydraulic performance is primarily determined by quasi-steady recirculating (dead) zones within the contactor chambers which are well-resolved in both RANS and LES. Testing of the RANS methodology is also performed for a wastewater stabilization pond leading to prediction of hydraulic performance indices in good agreement with field measurements. However, for column contactors, LES performs better than RANS due to the ability of the LES to resolve unsteady or unstable flow structure associated with spatial transition to turbulence which is important in the determination of the hydraulic performance of the contactor. In the second part of this dissertation the RANS methodology is adapted in order to develop a novel modeling framework for ozone disinfection of drinking water. This framework is unique as it combines CFD with kinetics-based reaction modeling to predict disinfection performance and bromate formation for the first time. Bromate, a human health hazard, is an undesired by-product of the disinfection of drinking water via ozonation. The modeling framework is validated via application to a full-scale ozone contactor. Predictions of ozone and bromate concentrations are consistent with data from physical experiments.
120

Reaction of Calcite and Dolomite with In-Situ Gelled Acids, Organic Acids, and Environmentally Friendly Chelating Agent (GLDA)

Rabie, Ahmed 1978- 14 March 2013 (has links)
Well stimulation is the treatment remedy when oil/gas productivity decreases to unacceptable economical limits. Well stimulation can be carried out through either "Matrix Acidizing" or fracturing with both "Hydraulic Fracturing" and "Acid Fracturing" techniques. "Matrix Acidizing" and "Acid Fracturing" applications involve injecting an acid to react with the formation and dissolve some of the minerals present and recover or increase the permeability. The permeability enhancement is achieved by creating conductive channels "wormholes" in case of "Matrix Acidizing" or creating uneven etching pattern in case of "Acid Fracturing" treatments. In both cases, and to design a treatment successfully, it is necessary to determine the distance that the live acid will be able to penetrate inside the formation, which in turn, determines the volume of the acid needed to carry out the treatment. This distance can be obtained through lab experiments, if formation cores are available, or estimated by modeling the treatment. The successful model will depend on several chemical and physical processes that take place including: the acid transport to the surface of the rock, the speed of the reaction of the acid with the rock, which is often referred to as "Reaction Rate", and the acid leak-off. The parameters describing these processes such as acid diffusion coefficient and reaction kinetics have to be determined experimentally to ensure accurate and reliable modeling. Hydrochloric acid and simple organic acids such as acetic and citric acids have been used extensively for stimulation treatments. The diffusion and reaction kinetics of these acids, in a straight form, were investigated thoroughly in literature. However, solely these acids are used in a simple form in the field. Acid systems such as gelled, crosslinked gelled, surfactant-based, foam-based, or emulsified acids are used to either retard the reaction rate or to enhance acid diversion. Literature review shows that additional work is needed to understand the reaction and report the diffusion and kinetics of these systems with carbonate. In addition, a new chelating agent (GLDA) was recently introduced as a stand-alone stimulating fluid. The kinetics and the mass transfer properties of this acid were not studied before. Therefore, the objective of this work is to study the reaction of different acid systems with calcite and dolomite and report the mass transport and kinetic data experimentally. Lactic acid, a chelating agent (GLDA), and in-situ gelled HCl-formic acids were investigated in this study. In some cases, rheology measurements and core flood experiments were conducted. The data were combined with the reaction study to understand the behavior of these acids and examine their efficiency if injected in the formation.

Page generated in 0.0861 seconds