Spelling suggestions: "subject:"realatedness"" "subject:"rootedness""
1 |
Kazhdan-Lusztig Polynomials of Matroids and Their RootsGedeon, Katie 31 October 2018 (has links)
The Kazhdan-Lusztig polynomial of a matroid M, denoted P_M( t ), was recently defined by Elias, Proudfoot, and Wakefield. These polynomials are analogous to the classical Kazhdan-Lusztig polynomials associated with Coxeter groups. For example, in both cases there is a purely combinatorial recursive definition. Furthermore, in the classical setting, if the Coxeter group is a Weyl group then the Kazhdan-Lusztig polynomial is a Poincare polynomial for the intersection cohomology of a particular variety; in the matroid setting, if M is a realizable matroid then the Kazhdan-Lusztig polynomial is also the intersection cohomology Poincare polynomial of a variety corresponding to M. (Though there are several analogies between the two types of polynomials, the theory is quite different.)
Here we compute the Kazhdan-Lusztig polynomials of several graphical matroids, including thagomizer graphs, the complete bipartite graph K_{2,n}, and (conjecturally) fan graphs. Additionally, we investigate a conjecture by the author, Proudfoot, and Young on the real-rootedness for Kazhdan-Lusztig polynomials of these matroids as well as a conjecture on the interlacing behavior of these roots. We also show that the Kazhdan-Lusztig polynomials of uniform matroids of rank n − 1 on n elements are real-rooted.
This dissertation includes both previously published and unpublished co-authored material.
|
2 |
Subdivisions of simplicial complexesBrunink, Jan-Marten 14 September 2021 (has links)
The topic of this thesis are subdivisions of simplicial complexes, in particular we focus on the so-called antiprism triangulation. In the first main part, the real-rootedness of the h-polynomial of the antiprism triangulation of the simplex is proven. Furthermore, we study combinatorial interpretations of several invariants as the h- and local h-vector. In the second part, we show the almost strong Lefschetz property of the antiprism triangulation for every shellable simplicial complex.
|
Page generated in 0.0387 seconds