• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 38
  • 17
  • 13
  • 8
  • 8
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 273
  • 108
  • 60
  • 49
  • 41
  • 40
  • 39
  • 39
  • 38
  • 35
  • 28
  • 27
  • 26
  • 25
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

GPS Receiver Testing on the Supersonic Naval Ordnance Research Track (SNORT)

Meyer, Steven J. 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / There is an interest in using Global Positioning System (GPS) receivers to find: Time Space Position Information (TSPI), miss distances between a missile and target, and using the data real time as an independent tracking aid for range safety. Ashtech, Inc. has several standalone GPS receivers they believe can work at high g levels. This paper investigates how the Ashtech GPS receivers work under high g loading in one axis. The telemetry system used to collect data from the receivers and the reconstruction of the data will also be discussed. The test was done at SNORT (Supersonic Naval Ordnance Research Track) located at NAWS, China Lake, CA. The g level obtained was about +23 g’s with a deceleration of -15 g’s. The velocity reached was about Mach 2.0. A summary of the errors is included.
92

VLA X-Band Preparation for Voyager 2 at Neptune

Brundage, William D. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1987 / Town and Country Hotel, San Diego, California / The Very Large Array (VLA) radio telescope, located in west-central New Mexico, obtains high-resolution radio images of astronomical objects by using Fourier aperture synthesis with 27 antennas. With the addition of X-band to its receiving capabilities by 1989, and when arrayed with the Goldstone Deep Space Communications Complex (GDSCC), the VLA will double the Deep Space Network (DSN) receiving aperture in the U. S. longitude for signals from Voyager 2 at Neptune. This paper describes the VLA and the installation of the X-band system, its operation and performance for Voyager data reception, and its capabilities for other science at X-band.
93

GPS RECEIVER SELECTION AND TESTING FOR LAUNCH AND ORBITAL VEHICLES

Schrock, Ken, Freestone, Todd, Bell, Leon 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / NASA Marshall Space Flight Center’s Bantam Robust Guidance Navigation & Control Project is investigating off the shelf navigation sensors that may be inexpensively combined into Kalman filters specifically tuned for launch and orbital vehicles. For this purpose, Marshall has purchased several GPS receivers and is evaluating them for these applications. The paper will discuss the receiver selection criteria and the test equipment used for evaluation. An overview of the analysis will be presented including the evaluation used to determine their success or failure. It will conclude with goals of the program and a recommendation for all GPS users.
94

SMART DIVERSITY RECEIVERS FOR DYNAMIC, MULTIPATH, FREQUENCY SELECTIVE FADED FQPSK AND OTHER SYSTEMS

Aflatouni, Katayoun, Feher, Kamilo 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Design, performance Test and Evaluation (T&E) of a novel smart diversity receiver, based on Feher Diversity (FD) patents over multipath, fast dynamic frequency selective fading channels is presented. A hardware simulator for construction of a frequency selective fading channel has been implemented in laboratory to resemble a telemetry aeronautical channel model, namely the two-path channel model. As an illustrative example, the block error rate (BLER) of a 1 Mb/s rate IRIG 106-00 and CCSDS standardized Feher’s patented quadrature phase shift keying (FQPSK) [1][2] with and without diversity in multipath frequency selective fading channels has been tested and evaluated. The experimental results clearly indicate significant performance improvement with the proposed diversity technique even in cases of severely distorted channels.
95

The design of transmitter/receiver and high speed analog to digital converters in wireless communication systems: a convex programming approach

Zhao, Shaohua, 趙少華 January 2008 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
96

Transmission strategies for multiple antenna wireless ad-hoc and relay networks

Vaze, Rahul 03 June 2010 (has links)
Wireless devices have become an integral part of our everyday lives. Cell-phones, PDA's, Wi-Fi enabled laptops, smart homes and appliances, and automated highway systems are some of the examples of wireless devices and networks in common use. More and more applications and functionalities are constantly being added to these devices, and to support these new applications high data rate communication is required between the wireless devices. Achieving high data rates with wireless communication is impeded by severe fluctuations in the received signal strength (called fading) due to mobility, the exponential attenuation of signal power with distance (called path loss), and interference due to simultaneous transmissions by different users at the same time or over same frequency band. Two of the promising techniques to mitigate the effects of fading, path loss, and interference are: using multiple antennas at the transmitter and receiver, and employing extra nodes (called relays) in between the transmitter and its receiver to relay the transmitter's message to its receiver. This dissertation identifies the optimal transmit and receive strategy with multiple antennas that maximizes the transmission capacity of an ad-hoc wireless network. The transmission capacity is defined as the maximum number of transmitter-receiver pairs that can simultaneously communicate under a per transmission quality of service constraint. This dissertation also presents novel relay transmission strategies for multiple antenna equipped relay based communication that achieve near optimal performance, with Shannon capacity and diversity-multiplexing tradeoff (DMT) as the performance metrics. The Shannon capacity is defined as the maximum rate of reliable communication, while the DMT characterizes the maximum diversity gain for a given value of multiplexing gain in a multiple antenna system. DMT is used as the benchmark, since transmission strategies that meet the DMT are guaranteed to leverage both the advantages of multiple antenna systems. / text
97

Analysis and design on low-power multi-Gb/s serial links

Hu, Kangmin 06 July 2011 (has links)
High speed serial links are critical components for addressing the growing demand for I/O bandwidth in next-generation computing applications, such as many-core systems, backplane and optical data communications. Due to continued process scaling and circuit innovations, today's CMOS serial link transceivers can achieve tens of Gb/s per pin. However, most of their reported power efficiency improves much slower than the rise of data rate. Therefore, aggregate I/O power is increasing and will exceed the power budget if the trend for more off-chip bandwidth is sustained. In this work, a system level statistical analysis of serial links is first described, and compares the link performance of Non-Return-to-Zero (2-PAM) with higher-order modulation (duobinary) signaling schemes. This method enables fast and accurate BER distribution simulation of serial link transceivers that include channel and circuit imperfections, such as finite pulse rise/fall time, duty cycle variation, and both receiver and transmitter forwarded-clock jitter. Second, in order to address link power efficiency, two test chips have been implemented. The first one describes a quad-lane, 6.4-7.2 Gb/s serial link receiver prototype using a forwarded clock architecture. A novel phase deskew scheme using injection-locked ring oscillators (ILRO) is proposed that achieves greater than one UI of phase shift for multiple clock phases, eliminating phase rotation and interpolation required in conventional architectures. Each receiver, optimized for power efficiency, consists of a low-power linear equalizer, four offset-cancelled quantizers for 1:4 demultiplexing, and an injection-locked ring oscillator coupled to a low-voltage swing, global clock distribution. Measurement results show a 6.4-7.2Gb/s data rate with BER < 10⁻¹² across 14 cm of PCB, and an 8Gb/s data rate through 4cm of PCB. Designed in a 1.2V, 90nm CMOS process, the ILRO achieves a wide tuning range from 1.6-2.6GHz. The total area of each receiver is 0.0174mm², resulting in a measured power efficiency of 0.6mW/Gb/s. Improving upon the first test chip, a second test chip for 8Gb/s forwarded clock serial link receivers exploits a low-power super-harmonic injection-locked ring oscillator for symmetric multi-phase local clock generation and deskewing. Further power reduction is achieved by designing most of the receiver circuits in the near-threshold region (0.6V supply), with the exception of only the global clock buffer, test buffers and synthesized digital test circuits at nominal 1V supply. At the architectural level, a 1:10 direct demultiplexing rate is chosen to achieve low supply operation by exploiting high-parallelism. Fabricated in 65nm CMOS technology, two receiver prototypes are integrated in this test chip, one without and the other with front-end boot-strapped S/Hs. Including the amortized power of global clock distribution, the proposed serial link receivers consume 1.3mW and 2mW respectively at 8Gb/s input data rate, achieving a power efficiency of 0.163mW/Gb/s and 0.25mW/Gb/s. Measurement results show both receivers achieve BER < 10⁻¹² across a 20-cm FR4 PCB channel. / Graduation date: 2012
98

Approximate dynamic programming and aerial refueling

Panos, Dennis C. 06 1900 (has links)
Aerial refueling is an integral part of the United States military's ability to strike targets around the world with an overwhelming and continuous projection of force. However, with an aging fleet of refueling tankers and an indefinite replacement schedule the optimization of tanker usage is vital to national security. Optimizing tanker and receiver refueling operations is a complicated endeavor as it can involve over a thousand of missions during a 24 hour period, as in Operation Iraqi Freedom and Operation Enduring Freedom. Therefore, a planning model which increases receiver mission capability, while reducing demands on tankers, can be used by the military to extend the capabilities of the current tanker fleet. Aerial refueling optimization software, created in CASTLE Laboratory, solves the aerial refueling problem through a multi-period approximation dynamic programming approach. The multi-period approach is built around sequential linear programs, which incorporate value functions, to find the optimal refueling tracks for receivers and tankers. The use of value functions allows for a solution which optimizes over the entire horizon of the planning period. This approach varies greatly from the myopic optimization currently in use by the Air Force and produces superior results. The aerial refueling model produces fast, consistent, robust results which require fewer tankers than current planning methods. The results are flexible enough to incorporate stochastic inputs, such as: varying refueling times and receiver mission loads, while still meeting all receiver refueling requirements. The model's ability to handle real world uncertainties while optimizing better than current methods provides a great leap forward in aerial refueling optimization. The aerial refueling model, created in CASTLE Lab, can extend the capabilities of the current tanker fleet. / Contract number: N00244-99-G-0019 / US Navy (USN) author.
99

GNSS-LTE/LTE-A interference mitigation : the adjacent channel rejection ratio approach

14 September 2015 (has links)
M.Ing. / The increase of interest in the development of radio communications, both terrestrial and satellite is reaching far and beyond the most optimistic expectations. There has been an accelerated emergence of newer technologies, all claiming highly coveted radio frequency spectrum resources. With the push for the development of location based services, utilizing satellite com- communications for military purposes and later for civilian use; there has been a parallel development in terrestrial communications technology making it possible to implement cost efficient reliable user systems for voice and data services ...
100

Modes dégradés résultant de l'utilisation multi constellation du GNSS / Degraded Modes Resulting From The Multi Constellation Use Of GNSS

Ouzeau, Christophe 08 April 2010 (has links)
Actuellement, on constate dans le domaine de la navigation, un besoin croissant de localisation par satellites. Apres une course a l'amelioration de la precision (maintenant proche de quelques centimetres grace a des techniques de lever d'ambiguite sur des mesures de phase), la releve du nouveau defi de l'amelioration de l'integrite du GNSS (GPS, Galileo) est a present engagee. L'integrite represente le degre de confiance que l'on peut placer dans l'exactitude des informations fournies par le systeme, ainsi que la capacite a avertir l'utilisateur d'un dysfonctionnement du GNSS dans un delai raisonnable. Le concept d'integrite du GNSS multi-constellation necessite une coordination au niveau de l'architecture des futurs recepteurs combines (GPS-Galileo). Le fonctionnement d'un tel recepteur dans le cas de passage du systeme multi-constellation en mode degrade est un probleme tres important pour l'integrite de navigation. Cette these se focalise sur les problemes lies a la navigation aeronautique multiconstellation et multi-systeme GNSS. En particulier, les conditions de fourniture de solution de navigation integre sont evaluees durant la phase d'approche APV I (avec guidage vertical). En disposant du GPS existant, du systeme Galileo et d'un systeme complementaire geostationnaire (SBAS), dont les satellites emettent sur des frequences aeronautiques en bande ARNS, la question fondamentale est comment tirer tous les benefices d'un tel systeme multi-constellation pour un recepteur embarque a bord d'un avion civil. En particulier, la question du maintien du niveau de performance durant cette phase de vol APV, en termes de precision, continuite, integrite et disponibilite, lorsque l'une des composantes du systeme est degradee ou perdu, doit etre resolue. L'objectif de ce travail de these est donc d'etudier la capacite d'un recepteur combine avionique d'effectuer la tache de reconfiguration de l'algorithme de traitement apres l'apparition de pannes ou d'interferences dans une partie du systeme GNSS multiconstellation et d'emettre un signal d'alarme dans le cas ou les performances de la partie du systeme non contaminee ne sont pas suffisantes pour continuer l'operation en cours en respectant les exigences de l'aviation civile. Egalement, l'objectif de ce travail est d'etudier les methodes associees a l'execution de cette reconfiguration pour garantir l'utilisation de la partie du systeme GNSS multi-constellation non contaminee dans les meilleures conditions. Cette etude a donc un interet pour les constructeurs des futurs recepteurs avioniques multiconstellation. / The International Civil Aviation Organization (ICAO) has defined the concept of Global Navigation Satellite System (GNSS), which corresponds to the set of systems allowing to perform satellite-based navigation while fulfilling ICAO requirements. The US Global Positioning Sysem (GPS) is a satellite-based navigation system which constitutes one of the components of the GNSS. Currently, this system broadcasts a civil signal, called L1 C/A, within an Aeronautical Radio Navigation Services (ARNS) band. The GPS is being modernized and will broadcast two new civil signals: L2C (not in an ARNS band) and L5 in another ARNS band. Galileo is the European counterpart of GPS. It will broadcast three signals in an ARNS band: Galileo E1 OS (Open Service) will be transmitted in the GPS L1 frequency band and Galileo E5a and E5b will be broadcasted in the same 960-1215 MHz ARNS band than that of GPS L5. GPS L5 and Galileo E1, E5a, E5b components are expected to provide operational benefits for civil aviation use. However, civil aviation requirements are very stringent and up to now, the bare systems alone cannot be used as a means of navigation. For instance, the GPS standalone does not implement sufficient integrity monitoring. Therefore, in order to ensure the levels of performance required by civil aviation in terms of accuracy, integrity, continuity of service and availability, ICAO standards define different systems/algorithms to augment the basic constellations. GPS, Galileo and the augmentation systems could be combined to comply with the ICAO requirements and complete the lack of GPS or Galileo standalone performance. In order to take benefits of new GNSS signals, and to provide the service level required by the ICAO, the architecture of future combined GNSS receivers must be standardized. The European Organization for Civil Aviation Equipment (EUROCAE) Working Group 62, which is in charge of Galileo standardization for civil aviation in Europe, proposes new combined receivers architectures, in coordination with the Radio Technical Commission for Aeronautics (RTCA). The main objective of this thesis is to contribute to the efforts made by the WG 62 by providing inputs necessary to build future receivers architecture to take benefits of GPS, Galileo and augmentation systems. In this report, we propose some key elements of the combined receivers' architecture to comply with approach phases of flight requirements. In case of perturbation preventing one of the needed GNSS components to meet a phase of flight required performance, it is necessary to be able to switch to another available component in order to try to maintain if possible the level of performance in terms of continuity, integrity, availability and accuracy. That is why future combined receivers must be capable of detecting the impact of perturbations that may lead to the loss of one GNSS component, in order to be able to initiate a switch. These perturbations are mainly atmospheric disturbances, interferences and multipath. In this thesis we focus on the particular cases of interferences and ionosphere perturbations. The interferences are among the most feared events in civil aviation use of GNSS. Detection, estimation and removal of the effect of interference on GNSS signals remain open issues and may affect pseudorange measurements accuracy, as well as integrity, continuity and availability of these measurements. In literature, many different interference detection algorithms have been proposed, at the receiver antenna level, at the front-end level. Detection within tracking loops is not widely studied to our knowledge. That is why, in this thesis, we address the problem of interference detection at the correlators outputs. The particular case of CW interferences detection on the GPS L1 C/A and Galileo E1 OS signals processing is proposed. Nominal dual frequency measurements provide a good estimation of ionospheric delay. In addition, the combination of GPS or GALILEO navigation signals processing at the receiver level is expected to provide important improvements for civil aviation. It could, potentially with augmentations, provide better accuracy and availability of ionospheric correction measurements. Indeed, GPS users will be able to combine GPS L1 and L5 frequencies, and future GALILEO E1 and E5 signals will bring their contribution. However, if affected by a Radio Frequency Interference, a receiver can lose one or more frequencies leading to the use of only one frequency to estimate the ionospheric code delay. Therefore, it is felt by the authors as an important task to investigate techniques aimed at sustaining multi-frequency performance when a multi constellation receiver installed in an aircraft is suddenly affected by radiofrequency interference, during critical phases of flight. This problem is identified for instance in [NATS, 2003]. Consequently, in this thesis, we investigate techniques to maintain dual frequency performances when a frequency is lost (L1 C/A or E1 OS for instance) after an interference occurrence.

Page generated in 0.0454 seconds