• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise e reconhecimento de imagem em cromatografia de camada fina

Sousa, António Augusto Varejão Teixeira de January 2007 (has links)
Tese de doutoramento. Ciências de Engenharia. Faculdade de Engenharia. Universidade do Porto. 2007
2

Sistema de notificação e reconhecimento automático de entidades em conteúdos audiovisuais

Oliveira, João Carlos Loureiro de Jesus January 2008 (has links)
Estágio realizado na ClusterMedia Labs / Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 2008
3

Um sistema eficiente de detecção da ocorrência de eventos em sinais multimídia. / An efficient system for detecting events in multimidia signals.

Celso de Oliveira 01 July 2008 (has links)
Nos últimos anos tem ocorrido uma necessidade crescente de métodos que possam lidar com conteúdo multimídia em larga escala, e com busca de tais informações de maneira eficiente e efetiva. Os objetos de interesse são representados por vetores descritivos (e. g. cor, textura, geometria, timbre) extraídos do conteúdo, associados a pontos de um espaço multidimensional. Um processo de busca visa, então, encontrar dados similares a uma dada amostra, tipicamente medindo distância entre pontos. Trata-se de um problema comum a uma ampla variedade de aplicações incluindo som, imagens, vídeo, bibliotecas digitais, imagens médicas, segurança, entre outras. Os maiores desafios dizem respeito às dificuldades inerentes aos espaços de alta dimensão, conhecidas por curse of dimensionality, que restringem significativamente a aplicação dos métodos comuns de busca. A literatura recente contém uma variedade de métodos de redução de dimensão que são altamente dependentes do tipo de dado considerado. Constata-se também certa carência de métodos gerais de análise que possam prever com precisão o desempenho dos algoritmos propostos. O presente trabalho contém uma análise geral dos princípios aplicáveis aos sistemas de busca em espaços de alta dimensão. Tal análise permite estabelecer de maneira precisa o compromisso existente entre robustez, refletida principalmente na imunidade a ruído, a taxa de erros de reconhecimento e a dimensão do espaço de observação. Além disto, mostra-se que é possível conceber um método geral de mapeamento, para fins de reconhecimento, que independe de especificidades do conteúdo. Para melhorar a eficiência de busca, um novo método de busca em espaços de alta dimensão é introduzido e analisado. Por fim, descreve-se sumariamente uma realização prática, desenvolvida segundo os princípios discutidos e que atende eficientemente aplicações comerciais de monitoramento de exibição de conteúdo em rádio e TV. / In the last few years there has been an increasing need for methods to deal with large scale multimedia content, and to search such information efficiently and effectively. The objects of interest are represented by feature vectors (e. g. color, texture, geometry, timbre) extracted from the content, associated to points in a multidimensional space. A search process aims, therefore, to find similar data to a given sample, typically measuring distance between points. It is a common problem to a wide range of applications that include sound, image, video, digital library, medical imagery, security, amongst others. The major challenges refer to the difficulties, inherent to the high dimension spaces, known as curse of dimensionality that limit significantly the application of the most common search methods. The recent literature contains a number of dimension reduction methods that are highly dependent on the type of data considered. Besides, there has been a certain lack of general analysis methods that can predict accurately the performance of the proposed algorithms. The present work contains a general analysis of the principles applicable to high dimension space search systems. Such analysis allows establishing in a precise manner the existing tradeoff amongst the system robustness, reflected mainly in the noise immunity, the error rate and the dimension of the observation space. Furthermore, it is shown that it is possible to conceive a mapping method, for recognition purpose, that can be independent of the content specificities. To improve the search efficiency, a new high dimension space search method is introduced and analyzed. Finally, a practical realization is briefly described, which has been developed in accordance with the principles discussed, and that addresses efficiently commercial applications relative to radio and TV content broadcasting monitoring.
4

Análise colorimétrica de faces humanas: uma abordagem para auxílio ao reconhecimento de imagens / Colorimetric analysis of human faces: an approach to image recognition assistance

Luciana de Sousa Santos 31 July 2013 (has links)
A quantificação colorimétrica da pele do rosto humano apresenta uma grande dispersão de valores. Esta dispersão varia de acordo com o espaço de cor (HSV ou YCbCr) adotado para a análise e quanto menor a dispersão mais adequado é o espaço ao reconhecimento facial. O objetivo deste trabalho é analisar a distribuição estatística da colorimetria de imagens de rostos digitalizadas. A análise poderá dizer se as coordenadas de cor, tais como saturação, matiz e valor podem auxiliar em técnicas de reconhecimento de faces. Como resultado da análise, espera-se concluir qual dos sistemas de coordenadas de cor (HSV ou YCbCr) é o mais adequado à aplicações em reconhecimento facial. Os resultados obtidos serão apresentados com fundamentação no design da informação. O grande número de amostras fotográficas disponíveis para análise (530) e o correto equilíbrio de iluminação, contraste e temperatura de cor constituem o principal diferencial desse trabalho. / The colorimetric quantification of the human face skin presents a large dispersion of values. This dispersion varies according to the color space (YCbCr or HSV) adopted for the analysis. The smaller the dispersion the more appropriate is a certain color space for face recognition methods. The objective of this paper is to analyze the colorimetric statistical distribution of digital face images. The analysis will show how color coordinates (such as hue, saturation and brightness), can help with facial recognition techniques. The result of this analysis will tell which color space (HSV or YCbCr) is more adequate to be used in face recognition systems. The results obtained will be presented in accordance with the fundamentals of information design. The large number of photographic samples available for analysis (530) and the right balance of lighting, contrast and color temperature are the main differential of this work.
5

Reconhecimento automático de defeitos de fabricação em painéis TFT-LCD através de inspeção de imagem

SILVA, Antonio Carlos de Castro da 15 January 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-09-12T14:09:09Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) MSc_Antonio Carlos de Castro da Silva_digital_12_04_16.pdf: 2938596 bytes, checksum: 9d5e96b489990fe36c4e1ad5a23148dd (MD5) / Made available in DSpace on 2016-09-12T14:09:09Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) MSc_Antonio Carlos de Castro da Silva_digital_12_04_16.pdf: 2938596 bytes, checksum: 9d5e96b489990fe36c4e1ad5a23148dd (MD5) Previous issue date: 2016-01-15 / A detecção prematura de defeitos nos componentes de linhas de montagem de fabricação é determinante para a obtenção de produtos finais de boa qualidade. Partindo desse pressuposto, o presente trabalho apresenta uma plataforma desenvolvida para detecção automática dos defeitos de fabricação em painéis TFT-LCD (Thin Film Transistor-Liquid Cristal Displays) através da realização de inspeção de imagem. A plataforma desenvolvida é baseada em câmeras, sendo o painel inspecionado posicionado em uma câmara fechada para não sofrer interferência da luminosidade do ambiente. As etapas da inspeção consistem em aquisição das imagens pelas câmeras, definição da região de interesse (detecção do quadro), extração das características, análise das imagens, classificação dos defeitos e tomada de decisão de aprovação ou rejeição do painel. A extração das características das imagens é realizada tomando tanto o padrão RGB como imagens em escala de cinza. Para cada componente RGB a intensidade de pixels é analisada e a variância é calculada, se um painel apresentar variação de 5% em relação aos valores de referência, o painel é rejeitado. A classificação é realizada por meio do algorítimo de Naive Bayes. Os resultados obtidos mostram um índice de 94,23% de acurácia na detecção dos defeitos. Está sendo estudada a incorporação da plataforma aqui descrita à linha de produção em massa da Samsung em Manaus. / The early detection of defects in the parts used in manufacturing assembly lines is crucial for assuring the good quality of the final product. Thus, this paper presents a platform developed for automatically detecting manufacturing defects in TFT-LCD (Thin Film Transistor-Liquid Cristal Displays) panels by image inspection. The developed platform is based on câmeras. The panel under inspection is positioned in a closed chamber to avoid interference from light sources from the environment. The inspection steps encompass image acquisition by the cameras, setting the region of interest (frame detection), feature extraction, image analysis, classification of defects, and decision making. The extraction of the features of the acquired images is performed using both the standard RGB and grayscale images. For each component the intensity of RGB pixels is analyzed and the variance is calculated. A panel is rejected if the value variation of the measure obtained is 5% of the reference values. The classification is performed using the Naive Bayes algorithm. The results obtained show an accuracy rate of 94.23% in defect detection. Samsung (Manaus) is considering the possibility of incorporating the platform described here to its mass production line.
6

Análise colorimétrica de faces humanas: uma abordagem para auxílio ao reconhecimento de imagens / Colorimetric analysis of human faces: an approach to image recognition assistance

Luciana de Sousa Santos 31 July 2013 (has links)
A quantificação colorimétrica da pele do rosto humano apresenta uma grande dispersão de valores. Esta dispersão varia de acordo com o espaço de cor (HSV ou YCbCr) adotado para a análise e quanto menor a dispersão mais adequado é o espaço ao reconhecimento facial. O objetivo deste trabalho é analisar a distribuição estatística da colorimetria de imagens de rostos digitalizadas. A análise poderá dizer se as coordenadas de cor, tais como saturação, matiz e valor podem auxiliar em técnicas de reconhecimento de faces. Como resultado da análise, espera-se concluir qual dos sistemas de coordenadas de cor (HSV ou YCbCr) é o mais adequado à aplicações em reconhecimento facial. Os resultados obtidos serão apresentados com fundamentação no design da informação. O grande número de amostras fotográficas disponíveis para análise (530) e o correto equilíbrio de iluminação, contraste e temperatura de cor constituem o principal diferencial desse trabalho. / The colorimetric quantification of the human face skin presents a large dispersion of values. This dispersion varies according to the color space (YCbCr or HSV) adopted for the analysis. The smaller the dispersion the more appropriate is a certain color space for face recognition methods. The objective of this paper is to analyze the colorimetric statistical distribution of digital face images. The analysis will show how color coordinates (such as hue, saturation and brightness), can help with facial recognition techniques. The result of this analysis will tell which color space (HSV or YCbCr) is more adequate to be used in face recognition systems. The results obtained will be presented in accordance with the fundamentals of information design. The large number of photographic samples available for analysis (530) and the right balance of lighting, contrast and color temperature are the main differential of this work.
7

Um modelo para inferência do estado emocional baseado em superfícies emocionais dinâmicas planares. / A model for facial emotion inference based on planar dynamic emotional surfaces.

João Pedro Prospero Ruivo 21 November 2017 (has links)
Emoções exercem influência direta sobre a vida humana, mediando a maneira como os indivíduos interagem e se relacionam, seja em âmbito pessoal ou social. Por essas razões, o desenvolvimento de interfaces homem-máquina capazes de manter interações mais naturais e amigáveis com os seres humanos se torna importante. No desenvolvimento de robôs sociais, assunto tratado neste trabalho, a adequada interpretação do estado emocional dos indivíduos que interagem com os robôs é indispensável. Assim, este trabalho trata do desenvolvimento de um modelo matemático para o reconhecimento do estado emocional humano por meio de expressões faciais. Primeiramente, a face humana é detectada e rastreada por meio de um algoritmo; então, características descritivas são extraídas da mesma e são alimentadas no modelo de reconhecimento de estados emocionais desenvolvidos, que consiste de um classificador de emoções instantâneas, um filtro de Kalman e um classificador dinâmico de emoções, responsável por fornecer a saída final do modelo. O modelo é otimizado através de um algoritmo de têmpera simulada e é testado sobre diferentes bancos de dados relevantes, tendo seu desempenho medido para cada estado emocional considerado. / Emotions have direct influence on the human life and are of great importance in relationships and in the way interactions between individuals develop. Because of this, they are also important for the development of human-machine interfaces that aim to maintain natural and friendly interactions with its users. In the development of social robots, which this work aims for, a suitable interpretation of the emotional state of the person interacting with the social robot is indispensable. The focus of this work is the development of a mathematical model for recognizing emotional facial expressions in a sequence of frames. Firstly, a face tracker algorithm is used to find and keep track of a human face in images; then relevant information is extracted from this face and fed into the emotional state recognition model developed in this work, which consists of an instantaneous emotional expression classifier, a Kalman filter and a dynamic classifier, which gives the final output of the model. The model is optimized via a simulated annealing algorithm and is experimented on relevant datasets, having its performance measured for each of the considered emotional states.
8

Um ambiente de avaliação da usabilidade de software apoiado por técnicas de processamento de imagens e reconhecimento de fala / An environment to support usability evaluation using image processing and speech recognition

Thiago Adriano Coleti 17 December 2013 (has links)
A filmagem e a verbalização são métodos de teste de usabilidade considerados fundamentais para apoiar a avaliação da usabilidade de software, pois permitem ao avaliador coletar dados reais da capacidade de interação de um sistema e sua influência sobre o usuário. Os testes são, geralmente, realizados com usuário reais do software para que os mesmos possam submeter a interface as mais diversas situações. Embora eficazes, a filmagem e a verbalização são pouco eficientes, pois necessitam de muito trabalho para análise dos dados coletados e identificação de problemas de usabilidade. Pesquisas já realizadas na área apontam para um tempo de análise de duas a dez vezes o tempo do teste. Este trabalho teve como objetivo desenvolver um ambiente computacional que utilizava eventos de pronuncia de palavras chave e reações faciais para apoiar o processo de coleta, análise e identificação de interfaces com possíveis problemas de usabilidade de forma rápida e segura. O ambiente foi composto por um aplicativo que monitorava (em segundo plano) a utilização de um determinado aplicativo registrando palavras chave pronunciadas pelo participante e imagens faciais em determinados intervalos de tempo. Além destes dados, imagens das telas do sistema (snapshots) também eram registrados a fim de indicar quais interfaces eram utilizadas no momento de um determinado evento. Após a coleta, estes dados eram organizados e disponibilizados para avaliador com destaques para eventos que poderiam indicar insatisfação do participante ou possíveis problemas na utilização. Foi possível concluir que os eventos relacionados à verbalização com palavras chave foram eficazes para apoiar a tarefa de análise e identificação de interfaces problemáticas, pois as palavras estavam relacionadas com classificadores que indicavam satisfação ou insatisfação por parte do usuário. A atividade de verbalização se mostrou mais eficiente quando a análise de seus dados foi aplicada em conjunto com as imagens faciais, pois permitiram uma análise mais confiável e abrangente. Nesta análise, o avaliador teve condições de identificar quais interfaces do sistema foram mal classificadas pelo usuário e qual era o foco de visão/utilização do usuário no momento do evento. Para análises efetuadas com utilização de palavras chave com/sem utilização de imagens, o tempo gasto para identificar as interfaces e possíveis problemas foi reduzido para menos de duas vezes o tempo de teste. / Filming and verbalization are considered fundamental usability test methods to support software usability evaluation, due to the reason that allows the evaluator to collect real data about the software interaction capacity and how it influences the user. The tests are, usually, performed by real software users because they can submit the system to several situations that were not presupposed by evaluator in the labs. Although effective, the filming and the verbalization are not efficient due to the reason that require a long time to analyzing the data and identify usability problems. Researches performed in the area present that the time to data analysis is two to ten times the test time. This research aimed to develop an environment that used events as words pronounced and face reactions to support the collect, analysis and identification of interfaces with usability problems easily and safe. The environment is composed by a software to monitoring (background) of the user activities. The software collects key words pronounced by the participant and face images in specific time intervals. Besides these data, snapshots of the interfaces were registered in order to present which interfaces were in used in the event moment. After the collect stage, these data were processed and available to the evaluator with highlights to events that could indicate unsatisfactory events or potential utilization problems. In this research, was possible to conclude that the verbalization events using key words were effective to support the analysis and identification of problematic interfaces because the words were related to specific context that indicated the user opinion. The verbalization activities were more effective in the moments that the data analysis was performed using the face images to support it, allowing more reliable and comprehensive data analysis. In this analysis, the evaluator was able to identify which interfaces were classified negatively by the participant and which was the user focus of view/use in the event moment. In analysis performed using key words and/or not using the face images, the time to identifying the interfaces and potentials usability problems was reduced to less than twice the time of test.
9

Processo de design baseado no projeto axiomático para domínios próximos: estudo de caso na análise e reconhecimento de textura. / Design process based on the axiomatic design for close domain: case study in texture analysis and recognition.

Ricardo Alexandro de Andrade Queiroz 19 December 2011 (has links)
O avanço tecnológico recente tem atraído tanto a comunidade acadêmica quanto o mercado para a investigação de novos métodos, técnicas e linguagens formais para a área de Projeto de Engenharia. A principal motivação é o atendimento à demanda para desenvolver produtos e sistemas cada vez mais completos e que satisfaçam as necessidades do usuário final. Necessidades estas que podem estar ligadas, por exemplo, à análise e reconhecimento de objetos que compõe uma imagem pela sua textura, um processo essencial na automação de uma enorme gama de aplicações como: visão robótica, monitoração industrial, sensoriamento remoto, segurança e diagnóstico médico assistido. Em vista da relevância das inúmeras aplicações envolvidas e pelo fato do domínio de aplicação ser muito próximo do contexto do desenvolvedor, é apresentada uma proposta de um processo de design baseado no Projeto Axiomático como sendo o mais indicado para esta situação. Especificamente, se espera que no estudo de caso da análise de textura haja uma convergência mais rápida para a solução - se esta existir. No estudo de caso, se desenvolve uma nova concepção de arquitetura de rede neural artificial (RNA), auto-organizável, com a estrutura espacial bidimensional da imagem de entrada preservada, tendo a extração e reconhecimento/classificação de textura em uma única fase de aprendizado. Um novo conceito para o paradigma da competição entre os neurônios também é estabelecida. O processo é original por permitir que o desenvolvedor assuma concomitantemente o papel do cliente no projeto, e especificamente por estabelecer o processo de sistematização e estruturação do raciocínio lógico do projetista para a solução do problema a ser desenvolvido e implementado em RNA. / The recent technological advance has attracted the industry and the academic community to research and propose methods, seek for new techniques, and formal languages for engineering design in order to respond to the growing demand for sophisticated product and systems that fully satisfy customers needs. It can be associated, for instance, with an application of object recognition using texture features, essential to a variety of applications domains, such as robotic vision, industrial inspection, remote sensing, security and medical image diagnosis. Considering the importance of the large number of applications mentioned before, and due to their characteristic where both application and developer domain are very close to each other, this work aims to present a design process based on ideas extracted from axiomatic design to accelerate the development for the classical approach to texture analysis. Thus, a case study is accomplished where a new conception of neural network architecture is specially designed for the following proposal: preserving the two-dimensional spatial structure of the input image, and performing texture feature extraction and classification within the same architecture. As a result, a new mechanism for neuronal competition is also developed as specific knowledge for the domain. In fact, the process proposed has some originality because it does take into account that the developer assumes also the customers role on the project, and establishes the systematization process and structure of logical reasoning of the developer in order to develop and implement the solution in neural network domain.
10

Método para execução de redes neurais convolucionais em FPGA. / A method for execution of convolutional neural networks in FPGA.

Sousa, Mark Cappello Ferreira de 26 April 2019 (has links)
Redes Neurais Convolucionais têm sido utilizadas com sucesso para reconhecimento de padrões em imagens. Porém, o seu alto custo computacional e a grande quantidade de parâmetros envolvidos dificultam a execução em tempo real deste tipo de rede neural artificial em aplicações embarcadas, onde o poder de processamento e a capacidade de armazenamento de dados são restritos. Este trabalho estudou e desenvolveu um método para execução em tempo real em FPGAs de uma Rede Neural Convolucional treinada, aproveitando o poder de processamento paralelo deste tipo de dispositivo. O foco deste trabalho consistiu na execução das camadas convolucionais, pois estas camadas podem contribuir com até 99% da carga computacional de toda a rede. Nos experimentos, um dispositivo FPGA foi utilizado conjugado com um processador ARM dual-core em um mesmo substrato de silício. Apenas o dispositivo FPGA foi utilizado para executar as camadas convolucionais da Rede Neural Convolucional AlexNet. O método estudado neste trabalho foca na distribuição eficiente dos recursos do FPGA por meio do balanceamento do pipeline formado pelas camadas convolucionais, uso de buffers para redução e reutilização de memória para armazenamento dos dados intermediários (gerados e consumidos pelas camadas convolucionais) e uso de precisão numérica de 8 bits para armazenamento dos kernels e aumento da vazão de leitura dos mesmos. Com o método desenvolvido, foi possível executar todas as cinco camadas convolucionais da AlexNet em 3,9 ms, com a frequência máxima de operação de 76,9 MHz. Também foi possível armazenar todos os parâmetros das camadas convolucionais na memória interna do FPGA, eliminando possíveis gargalos de acesso à memória externa. / Convolutional Neural Networks have been used successfully for pattern recognition in images. However, their high computational cost and the large number of parameters involved make it difficult to perform this type of artificial neural network in real time in embedded applications, where the processing power and the data storage capacity are restricted. This work studied and developed methods for real-time execution in FPGAs of a trained convolutional neural network, taking advantage of the parallel processing power of this type of device. The focus of this work was the execution of convolutional layers, since these layers can contribute up to 99% of the computational load of the entire network. In the experiments, an FPGA device was used in conjunction with a dual-core ARM processor on the same silicon substrate. The FPGA was used to perform convolutional layers of the AlexNet Convolutional Neural Network. The methods studied in this work focus on the efficient distribution of the FPGA resources through the balancing of the pipeline formed by the convolutional layers, the use of buffers for the reduction and reuse of memory for the storage of intermediate data (generated and consumed by the convolutional layers) and 8 bits for storage of the kernels and increase of the flow of reading of them. With the developed methods, it was possible to execute all five AlexNet convolutional layers in 3.9 ms with the maximum operating frequency of 76.9 MHz. It was also possible to store all the parameters of the convolutional layers in the internal memory of the FPGA, eliminating possible external access memory bottlenecks.

Page generated in 0.1809 seconds