• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 23
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 97
  • 50
  • 48
  • 40
  • 28
  • 21
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Epitaxial Gallium Oxide Heterojunctions for Vertical Power Rectifiers

Spencer, Joseph Andrew 03 June 2024 (has links)
At the heart of all power electronic systems lies the semiconductor, responsible for passing large amounts of current at negligible power losses in the on-state, while instantaneously switching to withstand high voltages in the off-state. For decades silicon (Si) has dominated nearly all aspects of electronic systems including power. As importunity for efficiency at higher power and fast switching speeds grows, the environments with which these systems are being tasked to operate in has also increased in rigor. This has placed semiconductors at the forefront of innovation as novel materials are being explored in hopes of meeting the demands for the future of power electronics. This exploration of novel materials for power electronics has come to fruition as the performance limits of narrow bandgap (EG) materials such as Si (1.1 eV) have been reached. The EG is a key measure of a materials ability to operate at high voltages and within high temperature environments. This is due to the direct relationship of the EG to the critical field strength which enables increased performance beyond that of narrow band gap materials such as Si and gallium arsenide. Wide bandgap (WBG) materials such as silicon carbide (SiC) and gallium nitride (GaN) with EG 3.3 eV and 3.4 eV, respectively, have emerged within the power electronics field to offer increased breakdown voltages (VBR) at lower on-resistances. However, ultrawide bandgap (UWBG) devices possess greater potential with superior performance limits in comparison to SiC and GaN. Ga2O3 (4.8 eV) is the only UWBG semiconductor with melt-growth capabilities that has already demonstrated research grade wafers up to 6" in diameter. Ga2O3 is also advantaged by the ability to grow thick, lowly-doped homoepitaxial drift regions from methods such as halide vapor phase epitaxy (HVPE) and metal organic chemical vapor deposition (MOCVD). This makes Ga2O3 a prime candidate for vertical power rectifiers as thick, high quality drift regions are a necessity for high voltage devices such as the PN diode, junction barrier Schottky (JBS) diode, merged-PiN-Schottky (MPS) diode, and Schottky barrier diode (SBD). However, Ga2O3 exhibits a lack of p-type conductive that arises from an absence of dispersion within the valence band maximum. This has caused researchers to abandon the idea of homojunction devices that Si, SiC, and GaN devices benefit from; shifting to a heterojunction approach where NiO (3.7 eV) provides the source of p-type conductivity. This complicates fabrication and device characterization particularly for the Ga2O3 JBS diode where an etched Ga2O3-NiO heterojunction has thus far been unreported throughout the literature. This work investigates the numerous individual aspects that comprise an etched Ga2O3 heterojunction device which include the etching method, post etch damage removal and its impact on electrical performance, and ohmic and Schottky contacts critical for a JBS diode; all culminating in the demonstration of a JBS and MPS diodes. We also report our investigations into co-doping of Ga2O3 that yield degenerately doped epitaxial layers with record mobility (μ) values. While not directly correlated with Ga2O3-NiO heterojunction devices, this study lays the ground work for semi-insulating Ga2O3 depletion into unintentionally doped (UID) n-type Ga2O3. / Doctor of Philosophy / Power semiconductor devices reside at the center of many critical infrastructures that power modern society. These systems include but are not limited to; telecommunications, power supplies, motor drives, and electric trains. The semiconductors embedded within these systems are tasked with passing large amounts of current at negligible power losses in the on-state, while simultaneously withstanding high voltages in the off-state. For decades, the ground breaking discoveries and engineering feats produced by scientist and engineers have propelled the field of power electronics forward. As importunity for efficiency at higher power and fast switching speeds grows, the environments with which these systems are being tasked to operate in has also increased in rigour. These demands cannot be met with traditional silicon (Si) based devices as the material properties have been pushed to their performance limits. This has led to emerging and novel wide and ultrawide bandgap semiconductors such as silicon carbide (SiC), gallium nitride (GaN), and gallium oxide (Ga2O3) becoming a greater presence within the field of high power electronics. Ga2O3 in particular has seen a recent surge in interest within the power electronics communities due to the prospect of meeting the aforementioned demands, aided by a number of advantageous material and electrical properties. Ga2O3 is unlike any other wide or ultrawide bandgap material in that high quality Ga2O3 films known as epitaxial layers can be deposited atop native meltgrown Ga2O3 substrates. This reduces any mismatch or undesirable boundaries between the substrate and epitaxial layers that could otherwise impact device performance. This makes Ga2O3 a prime candidate for vertical power rectifiers, or switches such as a PN diode, junction barrier Schottky (JBS) diode or Schottky barrier diode (SBD). However, there has been no realization of p-type conductivity, or positively charged mobile carriers, within Ga2O3. This makes devices such as the PN and JBS diode difficult, as they rely on both n- and p-type conductivity. Without a source of p-type conductivity, Ga2O3 will be limited to unipolar devices that lack superior breakdown voltages and robustness. This work explores Ga2O3 heterojunction diodes, specifically the JBS diode, where nickel oxide (NiO) is used as the source of p-type conductivity. The need for a heterojunction introduces a host of issues that are otherwise not seen within bipolar semiconductors such as Si, SiC, and GaN. Our work details the analysis of the individual aspects that comprise a Ga2O3 heterojunction barrier Schottky diode including the etching process, etch damage removal, NiO sputtering, and contact formation. Our efforts have provided insight into unexplored areas within the Ga2O3 literature, leading to the first demonstration of a Ga2O3 merged- PiN-Schottky (MPS) diode; a more robust JBS diode capable of handling surge current. This work serves to further Ga2O3 as a viable semiconductor for the future of high power vertical rectifiers.
42

Improvements in integrated high-quality rectifier-regulators

Tsang, Dan Man Cheung 07 April 2009 (has links)
The integrated high-quality rectifier-regulators [1] are not practical for universal input voltage and wide load range applications because of high bulk-capacitor voltage stress at lighter loads. This load-dependent characteristic of the bulk-capacitor voltage is due to the integration of a discontinuous conduction mode boost converter and a continuous conduction mode dc-dc converter. In addition, this power factor correction technique suffers from a high-voltage spike on the switch at turn-off. In this thesis, variable frequency control, swinging choke, and low loss LC snubber techniques are proposed to alleviate these problems. Finally, several experimental converters with different specifications are evaluated with respect to efficiency and ability to meet the IEC555-2 standards. / Master of Science
43

Single-switch three-phase zero-current-transition rectifier with power factor correction

Gatarić, Slobodan 16 December 2009 (has links)
A novel, zero-current-transition (ZCT) topology of the single-switch three-phase boost PFC rectifier is proposed. The soft transition is achieved with a low-power auxiliary circuit employing an additional switch. The circuit can be used with an IGBT at switching frequencies up to 50. Its operation is analyzed in detail, and design guidelines are provided. The small signal model of the circuit is developed, and voltage mode control is designed. The results are verified on a 4 kW, 50 kHz, experimental ZCT rectifier with an IGBT; total harmonic distortion below 9% and efficiency above 95% were obtained. / Master of Science
44

The electronic rectifier as a power supply for d c motors

Phillips, Thomas Leonard January 1948 (has links)
Master of Science
45

Integrated CM Filter for Single-Phase and Three-Phase PWM Rectifiers

Hedayati, Mohammad Hassan January 2015 (has links) (PDF)
The use of insulated-gate bipolar transistor (IGBT)-based power converters is increasing exponentially. This is due to high performance of these devices in terms of efficiency and switching speed. However, due to the switching action, high frequency electromagnetic interference (EMI) noises are generated. Design of a power converter with reduced EMI noise level is one of the primary objectives of this research. The first part of the work focuses on designing common-mode (CM) filters, which can be integrated with differential-mode (DM) filters for three-phase pulse-width modulation (PWM) rectifier-based motor drives. This work explores the filter design based on the CM equivalent circuit of the drive system. Guidelines are provided for selection of the filter components. Different variants of the filter topology are evaluated to establish the effectiveness of the proposed topology. Analytical results based on Bode plot of the transfer functions are presented, which suggest effective EMI reduction. Experimental results based on EMI measurement on the grid side and CM current measurement on the motor side are presented. These results validate the effectiveness of the filter. In the second part of the work, it is shown that inclusion of CM filters into DM filters results in resonance oscillations in the CM circuit. An active damping strategy is proposed to damp the oscillations in both line-to-line and line-to-ground ac voltages and currents. An approach based on pole placement by state feedback is used to actively damp both the DM and CM filter oscillations. Analytical expressions for state-feedback controller gains are derived for both continuous-and discrete-time models of the filter. Trade-off in selection of the active damping gain on the lower-order grid current harmonics is analysed using a weighted admittance function method. In the third part of the work, single-phase grid-connected power converters are considered. An integrated CM filter with DM LCL filter is proposed. The work explores the suitability of PWM methods for single-phase and parallel single-phase grid-connected power converters. It is found that bipolar PWM and unipolar PWM with 180◦interleaving angle are suitable for single-phase and parallel single-phase power converters, respectively. The proposed configuration along with the PWM methods reduces the CM voltage, CM current, and EMI noise level effectively. It is also shown that the suggested circuit is insensitive to nonidealities of the power converter such as dead-time mismatch, mismatch in converter-side inductors, unequal turn on and turn off of the switches, and propagation delays. In the fourth part of the work, the inter-phase inductor in parallel interleaved power converters is integrated with LCL filter boost inductor. Different variant designs are presented and compared with the proposed structure. It is shown that the proposed structure makes use of standard core geometries and consumes lesser core material as well as copper wire. Hence, it reduces the overall size and cost of the power converter. In the present work, a 10kVA three-phase back-to-back connected with input LCL filter and output dv/dt filter, a 5kVA single-phase grid-connected power converter with LCL filter, and a 7.5kVA parallel single-phase grid-connected power converter with LCL filter are fabricated in the laboratory to evaluate and validate the proposed methods. The experimental results validate the proposed methods that result in significant EMI performance improvement of grid-connected power converters.
46

A New Paradigm for Large Brushless Hydrogenerators : Advantages Beyond the Static System

Nøland, Jonas Kristiansen January 2017 (has links)
The grid code, FIKS, from the Norwegian transmission system operator (TSO), Statnett, states that synchronous generators > 25MVA, must have a static excitation system. However, an improved brushless excitation system is in operation on some commercial power plants (36MVA, 93.75rpm & 52MVA, 166.67rpm) with grid-assisting performance beyond the conventional static system. The convenional diode bridge is replaced with a remote-controlled thyristor bridge on the shaft. If wireless communication is not allowed, a control signal through brushes should be employed instead. The thesis explores the expected new era for large brushless hydrogenerators. The proposed brushless system have benefits of reduced regular maintenance due to elimination of brushes and reduced unscheduled maintenance due to redundancy; causing a redused cost-of-energy. A six-phase exciter design with a hybrid-mode thyristor bridge interface leads to improved fault-tolerance, better controllability, minimized torque pulsations and reduced armature currents of the exciter. Excitation boosting (EB) capability is included in the brushless system without additional components or circuitry, contrary to the static excitation system. The brushless excitation system is made insensitive to voltage dips in the interconnected grid, causing improved fault ride-through (FRT) capability and power system stabilizer (PSS) actions.
47

A Constant Frequency Resonant Transition Converter

Rajapandian, A 08 1900 (has links) (PDF)
No description available.
48

Design of detailed models for use in fast aeroelastic simulations of permanent-magnet direct-drive wind turbines

Ochs, David S. January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Ruth Douglas Miller / This thesis presents the design of two models for permanent-magnet direct-drive wind turbines. The models are of a 10 kW and a 5 MW wind turbine, which are representative of residential scale and commercial scale turbines respectively. The models include aerodynamic and mechanical simulations through the FAST software, as well as concurrent electrical simulations through the SimPowerSystems toolbox for MATLAB/Simulink. The aim is to provide wind turbine designers and researchers with a comprehensive simulation tool that they can use to design and test many different aspects of a wind turbine. The particular novelty of these models is their high level of detail in electromechanical simulations. For each model, a generator speed controller was designed in a reference frame attached to the generator’s rotor, and was executed with a 3-phase active rectifier using space-vector pulse-width modulation. Also for each model, active and reactive power controllers were designed in a reference frame synchronous with the grid, and were executed with a 3-phase inverter using space-vector pulse-width modulation. Additionally, a blade pitch controller was designed for the 5 MW model. Validation of the models was carried out in the MATLAB/Simulink environment with satisfactory results.
49

Análise e projeto de um conversor ca-cc de comutação forçada / not available

Almeida, Paulo Roberto Lima 01 September 1995 (has links)
Este trabalho tem como principal objetivo apresentar uma investigação e uma metodologia de projeto, até o presente momento inédita, de uma topologia de um conversor ca-cc trifásico de comutação forçada. Através da análise desenvolvida neste trabalho, determina-se um modelo matemático do conversor ca-cc para os quatro modos que determinam o processo da comutação nesse circuito. Esse modelo resulta em sistemas de equações fundamentais na forma de equações diferenciais, que são resolvidos com a finalidade de determinar o comportamento do circuito do conversor durante o processo de comutação e de obter uma metodologia de projeto. Com o objetivo de validar a investigação e o método de projeto foi implementada simulação computacional, no programa Simmon, dos intervalos de comutação do conversor ca-cc de comutação forçada. Essa estrutura, que durante a sua operação emprega tanto a comutação forçada como a natural, quando comparada com os conversores de comutação natural apresenta várias vantagens, como um alto fator de potência e a eliminação dos harmônicos de baixa ordem na linha ca (utilização da comutação forçada com a técnica de modulação por largura de pulso PWM), como mostra vátios trabalhos publicados, que estão desctitos na parte de referências bibliográficas deste texto. / The main objective of this work is to present an investigation and a design method, which up to now is not available in the literature, of a three-phase force commutated ac-dc convetier. From the analysis developed in this work one obtains the mathematical model of the ac-dc converter for its four modes of commutation, which determine the commutation process in the converter circuit. The fundamental equations, which have been written in the form of differential equations, are solved to determine the behaviour of the converter circuit during commutation, and also to obtain a design method. To validate the analysis and the design procedure, computer simulation of the commutation intervals of the ac-dc converter was implemented using the program Simnon. The three-phase ac-dc converter, which uses both forced and line commutation, when compared with the conventional line commutated converter, presents several advantages as a high power factor and the elimination of lower harmonics of the ac line (utilization of the forced commutation and the pulse width modulation strategy), as it is shown in several published works, which can be found in the references of this work.
50

Estudo e implementação de um retificador PWM para aplicações em processos galvânicos / Study and implementation of a PWM rectifier for applications in galvanic processes

Del Bianco, Henrique de Souza 08 September 2015 (has links)
O trabalho desenvolve o estudo de retificadores PWM para aplicações em processos galvânicos. A utilização de técnicas PWM é objeto de estudo, visando à obtenção de alto fator de potência, baixo conteúdo harmônico e baixo ripple de corrente que atendam tanto às necessidades de qualidade de energia, quanto à demanda das aplicações de carga. O trabalho contempla a criação de um protótipo que preencha os requisitos de aplicações industriais voltadas ao tratamento de superfícies, tais como: eletrodeposição, eletro-polimento, entre outros e a melhora na qualidade de energia. As simulações em ambiente computacional com MATLAB® e o software PSIM®, forneceram a base para o desenvolvimento do protótipo e comprovar o estudo. Na prática, pequenas chapas de latão foram banhadas com o protótipo nos modos de controle de ângulo de fase, controle PWM regular e PWM senoidal e obtidas fotos microscópicas para a análise da camada do banho depositada, onde foi comprovado o rendimento protótipo em relação a Qualidade da Energia Elétrica. / The current work aims to study PWM rectifiers for applications in galvanics processes. The use of PWM techniques is the object of study in order to obtain high power factor, low harmonic content and low ripple current that meet both the needs of power quality, the demand of load applications. The study aims to create a prototype which meets the requirements of industrial applications focuses on the treatment of surfaces, such as electroplating, electro-polishing, among others, and the improvement of energy quality. The simulations in computing environment with MATLAB and software PSIM®, provided the basis for the development of prototype and verify the study. In practice, small plates of brass were bathed with the prototype in modes of phase angle control, regular PWM control and sinusoidal PWM and obtained microscopic images for the analysis of the deposited bath layer, where it was proven the prototype income in relation to Quality Electric Power.

Page generated in 0.0558 seconds