• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 1
  • Tagged with
  • 33
  • 33
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The relationship between el niño Southern oscillation and levels of paralytic shellfish poisoning present in Washingtons marine waters

Lumper, Randy N. January 2008 (has links) (PDF)
Thesis (M.E.S.)--The Evergreen State College, 2008. / Title from title screen (viewed 2/25/2010). Includes bibliographical references (leaves 68-70).
12

Sublethal interactions between the harmful alga karenia brevis and its competitors

Poulson, Kelsey L. 20 September 2013 (has links)
I investigated how competitor species respond to chemical cues released from the red tide dinoflagellate Karenia brevis. K. brevis produces a mix of unstable, relatively polar, allelopathic organic molecules that are produced and released at low concentrations. The production of these compounds also varies greatly within and among strains of K. brevis. The majority of these compounds caused sublethal reductions in competitor growth. In laboratory experiments, these compounds inhibited the growth of competitors Asterionellopsis glacialis, Skeletonema grethae, Prorocentrum minimum, and Akashiwo sanguinea, although each species was susceptible to a different sub-set of K. brevis compounds. Cell physiological state and population densities were important in dictating the susceptibility of competitors to allelopathy: phytoplankton were most susceptible to K. brevis allelopathy when in earlier growth stages (rather than later stages) and in lower cell concentrations. However, these compounds have limited negative effects on natural, mixed populations of competitors from both near and offshore environments, and competitors from inshore and offshore environments appear to respond similarly to K. brevis allelopathy. In the sensitive competitor, Thalassiosira pseudonana, allelopathic compounds ultimately caused a reshuffling of cellular nitrogen pools, altered carbon storage and impaired osmotic regulation as determined using a nuclear magnetic resonance (NMR) based metabolomics approach. By characterizing the pool of primary metabolites present in the cell after exposure to K. brevis cues, we inferred which metabolic pathways may be affected by allelopathy. For instance, concentrations of betaine and the aromatic metabolite homarine were suppressed, indicating that K. brevis allelopathy may disrupt this competitor’s ability to osmoregulate. Exposure to K. brevis cues enhanced the concentrations of glutamate and the fatty acid caprylate/caprate in T. pseudonana, suggesting that protein degradation was enhanced and that energy metabolism was altered. This contrasts with the response to K. brevis allelopathy of the diatom Asterionellopsis glacialis, which was much more resistant to chemical cues produced by K. brevis, likely through as yet unidentified detoxification pathways. Overall, my dissertation research provides insight into how species-specific, antagonistic interactions among phytoplankton competitors can affect community structure through direct or indirect mechanisms, highlights the potential role of allelopathy in the maintenance of K. brevis blooms, and uses a novel tool set (i.e., metabolomics) to determine the molecular targets of K. brevis allelopathy. It further demonstrates that planktonic communities are complex and dynamic ecological systems and that interspecific interactions between phytoplankton can have unexpected, cascading impacts in marine systems.
13

Chemically-mediated interactions in the plankton:

Prince, Emily Katherine. January 2008 (has links)
Thesis (Ph. D.)--Biology, Georgia Institute of Technology, 2008. / Committee Chair: Kubanek, Julia; Committee Member: Hay, Mark; Committee Member: Jiang, Lin; Committee Member: Pavia, Henrik; Committee Member: Snell, Terry.
14

The use of phytoplankton pigments for studying phytoplankton community structure and red tide occurrence in Tolo Harbour, Hong Kong. / CUHK electronic theses & dissertations collection / Digital dissertation consortium

January 2003 (has links)
Wong Chun Kwan. / "June, 2003." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (p. 211-231). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
15

Red tides: a detrimentall threat to the environment

Wai, Siu-wah., 衛兆華. January 1998 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
16

Vectors of Brevetoxins to Marine Mammals

Flewelling, Leanne J 24 October 2008 (has links)
Mass mortalities of Florida manatees (Trichechus manatus latirostris) and bottlenose dolphins (Tursiops truncatus) have been attributed to brevetoxins produced by the Florida red tide dinoflagellate Karenia brevis. The multiple routes through which marine mammals can be exposed to brevetoxins have complicated efforts to understand the mechanisms that lead to mass mortality events. In spring of 2002, 34 endangered Florida manatees died in southwest Florida, and in spring of 2004, 107 bottlenose dolphins died in the Florida Panhandle. These events provided unique opportunities to make clear connections between ingested brevetoxins and marine mammal mortalities without the confounding issues of concurrent exposure through direct contact or inhalation. Prior to 2002, the accumulation of brevetoxins on or in seagrass had never been previously reported, and the delayed or chronic exposure of manatees to brevetoxins through seagrass was not recognized as a threat. Brevetoxins were shown to persist in association with seagrass at high levels for weeks and at lower levels for months in the absence of K. brevis. Analyses of the epiphytes and detritus on the surface of the seagrass leaves as well as of the cleaned seagrass leaves and rhizomes revealed that during a K. brevis bloom as much as half of the toxin present in the seagrass may be associated with the leaves themselves, while after a bloom, the majority of the toxin present is associated with the epiphytes. The 2004 mass mortality of bottlenose dolphins in the Florida Panhandle clearly indicated that fish have the potential to vector brevetoxins to higher tropic levels. Analyses of fish collected live from St. Joseph Bay and southwest Florida revealed that brevetoxin accumulation in fish is a common occurrence. Planktivorous clupeid fish are capable of accumulating high concentrations of brevetoxins within their viscera, and their movement can result in spatial separation of a bloom and animal exposure. Sciaenid species and pinfish also accumulated brevetoxins but to a lower extent. These fish, as well as other omnivorous and piscivorous species, may retain brevetoxins in their tissues at significant concentrations after a bloom has dissipated, which may lead to temporal separation of blooms and animal exposure.
17

Brevetoxin Body Burdens in Seabirds of Southwest Florida

Atwood, Karen E 28 March 2008 (has links)
Harmful algal blooms (HABs, or "red tides") of the brevetoxin-producing dinoflagellate Karenia brevis occur periodically along Florida's Gulf coast. Mass mortalities of marine birds have long been associated with these blooms, yet there are few data documenting the accumulation of brevetoxins (PbTx) in the tissues of birds. Post-mortem evaluations were performed on 185 birds representing 22 species collected from October 2001 through May 2006 during red tide and non-red tide events to quantify their body burdens of brevetoxins. A variety of tissues and organs were selected for brevetoxin analysis including blood, brain, heart, fat, stomach or gut contents, intestinal contents or digestive tract, muscle, lung, liver or viscera, kidney, gonads, gallbladder and spleen. Brevetoxin levels in avian tissues ranged from K. brevis which may amass in various tissues of the body. As a consequence, the birds may exhibit acute brevetoxicosis during red tide events or show chronic accumulation effects during non-red tide events.
18

The Use of Satellite-Based Ocean Color Measurements for Detecting the Florida Red Tide (Karenia brevis)

Carvalho, Gustavo de Araujo 01 January 2008 (has links)
As human populations increase along coastal watersheds, the understanding and monitoring of Harmful Algal Blooms (or red tides) is an increasingly important issue. A consistent method for accurately detecting red tides using satellite measurements would bring tremendous societal benefits to resource managers, the scientific community and to the public as well. In the West Florida Shelf, blooms of the toxic dinoflagelate Karenia brevis are responsible for massive red tides causing fish kills, massive die-offs of marine mammals, shellfish poisoning, and acute respiratory irritation in humans. In this work, for the first time a long-term dataset (2002~2006) the MODerate Resolution Imaging Spectroradiometer (MODIS) is compared (i.e., matched-up) to an extensive data set of in situ cell counts of K. brevis; provided by the Florida Fish and Wildlife Conservation Commission's Fish and Wildlife Research Institute. The pairing of remote sensing data with near-coincident field measurements of cell abundance was successfully used to derive the basis for the development of an alternative ocean color based algorithm for detecting the optical signatures associated with blooms of K. brevis in waters of the West coast of Florida. Conclusions are geographically limited to the Central West Florida Shelf during the boreal Summer-Fall (i.e., the K. brevis blooming season). The new simpler Empirical approach is compared with other two more complicated published techniques. Their potential is verified and uncertainties involved in the identification of blooms of K. brevis are presented. The results shown here indicate that the operational NOAA method for detecting red tides in the Gulf of Mexico (Stumpf et al., 2003; Tomlinson et al., 2004) performs less accurately than the other two algorithms at identifying K. brevis blooms. The sensitivity and specificity of the Bio-optical (Cannizzaro, 2004; Cannizzaro et al., 2008) and Empirical algorithms are simultaneously maximized with an optimization procedure. The combined use of these two optimized algorithms in sequence provides another new monitoring tool with improved accuracy at detecting K. brevis of blooms. The ability of this Hybrid scheme ranges about 80% for both sensitivity and specificity; and the capability at predicting a correct red tides is 70%, and ~85% for non-blooms conditions. The spatial and temporal knowledge of K. brevis blooms can improve the direction of field monitoring to areas that should receive special attention, allowing better understanding of the red tide phenomenon by the scientific community. The relevant agencies can also develop more appropriate mitigation action plans, and public health guidance can be improved with the enhancement of sustainable costal management strategies.
19

Red tides and algal blooms in subtropical Hong Kong waters: field observations and Lagrangianmodeling

Wong, Tse-man, Ken, 黃子文 January 2004 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
20

Brevetoxins in marine birds: Evidence of trophic transfer and the role of prey fish as toxin vector

Van Deventer, Michelle 01 June 2007 (has links)
Harmful algal blooms (HABs) of the brevetoxin-producing dinoflagellate Karenia brevis occur periodically along the central west coast of Florida. Mass mortalities of marine birds have long been associated with these blooms, yet there is little data documenting the accumulation of brevetoxins in the tissues of birds and their prey items. An intense HAB event impacted the region from Tampa Bay to Charlotte Harbor during most of 2005. More than one hundred marine birds, representing twenty three species, were collected during this bloom. All birds sampled were found dead or had died within 24 hours of admittance to local wildlife rehabilitation centers. In order to determine if fish were vectors for brevetoxin ingestion, the stomach contents of all birds were examined and any recovered fish were identified to the extent possible. The gastrointestinal tissues and contents from all avian samples were analyzed for brevetoxin levels, with results ranging from Shorebirds and gulls may also be exposed to brevetoxins via scavenging of red tide-killed fish deposited on beaches during blooms. Samples from scavenged fish were found to have brevetoxin levels ranging from 31 to 95,753 ng PbTx per gram tissue.

Page generated in 0.0754 seconds