• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 75
  • 24
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 5
  • 5
  • 2
  • Tagged with
  • 295
  • 49
  • 47
  • 46
  • 41
  • 39
  • 32
  • 32
  • 25
  • 22
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Refining of Silicon During its Solidification from a Cu-Si Melt

Visnovec, Karl 03 January 2012 (has links)
Current methods of solar-grade silicon (SG-Si) production are energy intensive and costly. The possibility of using metallurgical techniques for refining metallurgical-grade Si (MG-Si) to SG-Si has been investigated. The main steps in the metallurgical refining route include alloying with copper to produce a 50-50wt% Cu-Si alloy, controlled solidification, crushing, and acid leaching. The controlled solidification process involved 5 variations to determine the best process to maximize Si dendrite agglomeration in the sample and produce the purest Si. This was determined by using various techniques, such as: optical imaging, dendrite analysis, EPMA and SEM analysis and ICP analysis. The crushing and acid leaching steps were carried out to remove the unwanted Cu3Si eutectic from the pure Si dendrite phase. Upon completion of the analysis techniques, the optimal cooling method was determined to be the top cooled, 0.5°C/min sample.
72

Silicon Refining Through Chemical Vapor Deposition

LI, Mark Xiang 03 January 2011 (has links)
Currently the cost of solar grade silicon accounts for approximately one third of the total solar cell cost, therefore a new silicon refining process is being proposed with the goal of lowering the cost of producing solar grade silicon. In this new process, Si-Cu alloys were used as the silicon source. One to one molar ratio H2-HCl gas mixtures were used as transport agents to extract Si out from the Si-Cu alloy at about 300-700oC, with following reaction taking place: Si+3HCl(g)=HSiCl3(g)+H2(g) While at about 1000-1300oC, pure Si deposits onto a hot silicon rod according to: Si+3HCl(g)=HSiCl3(g)+H2(g) The role of the copper in the alloy was to trap impurities in the Si and catalyze the gas solid reaction. A study on determining the rate limiting step and impurity behavior was done. A possible silicon extraction reaction mechanism was also addressed.
73

Refining of Silicon During its Solidification from a Cu-Si Melt

Visnovec, Karl 03 January 2012 (has links)
Current methods of solar-grade silicon (SG-Si) production are energy intensive and costly. The possibility of using metallurgical techniques for refining metallurgical-grade Si (MG-Si) to SG-Si has been investigated. The main steps in the metallurgical refining route include alloying with copper to produce a 50-50wt% Cu-Si alloy, controlled solidification, crushing, and acid leaching. The controlled solidification process involved 5 variations to determine the best process to maximize Si dendrite agglomeration in the sample and produce the purest Si. This was determined by using various techniques, such as: optical imaging, dendrite analysis, EPMA and SEM analysis and ICP analysis. The crushing and acid leaching steps were carried out to remove the unwanted Cu3Si eutectic from the pure Si dendrite phase. Upon completion of the analysis techniques, the optimal cooling method was determined to be the top cooled, 0.5°C/min sample.
74

The Influence of Traditional and Minimal Refining on the Minor Constituents of Canola Oil

Mirzaee Ghazani, Saeed 07 December 2012 (has links)
The minimal refining method described in this study made it possible to neutralize crude canola oil using some weaker alkali such as Ca(OH)2, MgO and Na2siO3 as an alternative for NaOH. After citric acid degumming, more than 98% of phosphorous content was removed from crude oil. The free fatty acid content after minimal neutralization with calcium hydroxide decreased from 0.50 to 0.03%. Other quality parameters such as peroxide value, anisidine value and chlorophyll content were within commercially acceptable levels. The use of Trisyl silica and Magnesol R60 made it possible to remove the hot water washing step and to decrease the amount of remaining soap to less than 10 ppm. There was no significant change in chemical characteristics of canola oil after wet and dry bleaching. During traditional neutralization, total tocopherol loss was 19.6% while minimal refining with Ca(OH)2, MgO and Na2siO3 resulted in 7.0, 2.6 and 0.9 % reduction in total tocopherols. Traditional refining removed 23.6% of total free sterols, although after minimal refining free sterols content did not change significantly (p<0.05). Both traditional and minimal refining resulted in almost complete removal of polyphenols from canola oil. Total phytosterols and tocopherols in two cold press canola oils were 7700, 8400 mg/kg and 370, 350 mg/kg, respectively. Total phytosterols and tocopherols contents in solvent extracted canola oil were 9500, 500 mg/kg, respectively. The minimal refining method described in this study was a new practical approach to remove undesirable components from crude canola oil confirmed with commercial refining standards as well as preserving more healthy minor components. / This research project is supported by National Services and Engineering Research Council of Canada (NSERC).
75

Distribution of oil sands formation water in bitumen froth

Jia, Bei Unknown Date
No description available.
76

Dynamic modelling and optimal control of sugar crystallisation in a multi-compartment continuous vacuum pan.

Love, David John. January 2002 (has links)
The objective of this work was to determine the operating conditions which would maximise the crystallisation performance of continuous vacuum pans used in the sugar industry. The specific application investigated in detail is crystallisation of high grade product sugar (A-sugar) in a South African raw cane sugar factory. The optimisation studies are based on a detailed dynamic mathematical model of a continuous pan. Whilst this model is based on the published work of others, the selection of variables and the formulation of the equations have been structured to produce a modular model of an individual compartment with the minimum number of independent variables. The independent variables have also been selected to meet the requirements of both a state-space control formulation and those necessary for the dynamic programming technique of optimisation. The modular compartment models are linked together to model a multi-compartment pan and the steady state model is derived as a special case of the dynamic model. For the model to simulate the conditions in South African sugar factories adequately requires appropriate descriptions of sucrose solubility and growth kinetics. Given the limited applicability of published data, experiments were undertaken to determine these parameters. Sucrose solubility in impure solutions was determined in laboratory tests designed to approach equilibrium by dissolution at conditions approximating those during pan boiling. The dependence of crystal growth rate on the concentration of impurity present in the mother liquor was investigated in both laboratory scale and pilot scale batch pan boiling experiments. The primary dependence of crystal growth rate on the super-saturation driving force was determined by fitting the steady state model to results of tests on an industrial scale continuous pan. The dynamic programming technique was used in conjunction with the mathematical model to determine the operating conditions which maximise steady state crystallisation performance. Using the crystallisation parameters determined for South African conditions, this approach has shown that the conventional wisdom of running with high crystal contents in all compartments of continuous pans boiling A-massecuite is not optimum. Pans should operate at lower crystal contents in earlier compartments, only increasing to higher crystal contents towards the final compartment. The specific values depend on seed conditions, pan design and the solubility and growth kinetics. To reap the benefits of being able to determine the optimum steady state operating condition for a continuous pan, it is necessary to be able to achieve effective steady state operation under industrial conditions. This requires both a steady loading on the pan and effective control of the crystallisation conditions within the pan. To stabilise loading, a strategy has been developed which uses buffer tanks in an optimal way to damp out flow fluctuations. This strategy accommodates multiple buffer tanks in series without the amplification of disturbances that occurs with some of the simpler published techniques. The dynamic behaviour of absolute pressure control and compartment feed control were investigated in an industrial scale pan. This work has demonstrated the importance of high quality absolute pressure control and developed techniques for effective automatic tuning of pan feed controls. As part of this research, computer control systems were developed as tools to provide the appropriate monitoring and control of the experiments undertaken. / Thesis (Ph.D.)-University of Natal, 2002.
77

The incorporation of impurities into sucrose crystals during the crystallisation process.

Lionnet, Georges Raoul Edouard. January 1998 (has links)
The main objective of this work is to propose a mechanism for the transfer of impurities into the sucrose crystal. To this end the transfer of impurities into the sucrose crystal was investigated, under crystallisation conditions similar to those found industrially. Most of the impurities, namely, colour bodies, potassium, calcium and starch, were selected on the basis of their industrial importance, but some exotic species, namely lithium and nickel, were chosen to represent other mono- and di-valent ions respectively, and dyes, such as methylene blue, which have been used in work with single crystal sucrose crystallisation, were included to make the results more general. A parameter to measure the rate at which impurities are transferred into the sucrose crystal was proposed. Experiments, carried out in a pilot plant evaporative crystalliser, were performed to establish the effect of selected factors on both the concentrations of impurities found in the sucrose crystal, and on the rate at which these impurities are incorporated into the crystal. All the factors selected, namely the rate of crystallisation, the temperature, the concentration and type of impurity, the diffusivity of the impurity in concentrated sucrose solutions, and the crystal dimensions, are shown to influence the rate of impurity transfer. Only the concentration in the feed and type of impurity, however, affect the final concentration of the impurity in the crystal. Concepts involving partition coefficients and adsorption isotherms were also investigated. The experimental data did not fit the adsorption isotherm models well, but the values obtained for the partition coefficients were similar to those quoted in the literature when exchange types of reactions are operative. Activation energies have been measured, both for the rate of crystallisation of sucrose, and for the rates of impurity transfer. The values obtained, particularly for the rate of impurity transfer, indicate that a transport mechanism is effective. The experimental results have been used to investigate the relevance of two models, one involving a two-step approach and the other an interfacial process, for the incorporation of the impurity into the sucrose crystal. The results obtained indicate that the interfacial breakdown model describes the transfer of all the impurities studied here, except for starch. / Thesis (Ph.D.)-University of Natal, Durban, 1998.
78

Production of activated carbon from South African sugarcane bagasse.

Mwasiswebe, Denny. January 2005 (has links)
South Africa has an annual sugarcane milling capacity of about 22 million tonnes on average producing about 3.3 million tonnes of dry bagasse, of which one third is surplus to factory requirements. Currently surplus bagasse is used for furfural, pulp and paper and cogeneration but significant amounts still remain . This prompted the need to find viable alternative and appropriate technology to utilize the surplus. A laboratory pilot plant was used to investigate the production of activated carbon from bagasse. Experiments were carried out to investigate conditions for making the best activated carbon in a rotary batch kiln, and also to examine potential ene rgy recovery from process gases using Gas Chromatography. Derived results from the laboratory experiments were used to develop a conceptual design for a demonstration plant sited within a sugar mill. The conceptual design was evaluated for economic and environmental impacts using a robust Excel spreadsheet and GABI-3 modelling software respectively. Excellent activated carbon was produced from sugarcane bagasse by a two-stage physical process involving pyrolysis and gasification with steam. The best operating conditions were pyrolysis at 700°C for 1 hr and activation at 850°C for 1hr, a heating rate of 10°C/min and a steam flow of 15g/g of char per hour. The active carbon yield was 7% on dry bagasse basis with a Methylene Blue Number of 257mglg of carbon. The active carbon had a sugar decolourisation capacity of 20% at a carbon dosage rate of 0.7 wt% on Brix using clear juice (l2°Brix) and 70% at 0.5 wt% on Brix using brown liquor (65°Brix) . The Freundlich isotherm showed that the bagasse-based activated carbon was a suitable adsorbent for sugar colour bodies. Gas analysis results revealed that the off gases from the pyrolysis and activation stages had calorific values of about 63MJ and 31MJ per kg of activated carbon respectively . The total combustion energy of 94 MJ/kg of active carbon was enough to satisfy the process energy requirements for drying, pyrolysis and activation. By burning combustibles like tar, methane, carbon monoxide, ethylene and hydrogen for process thermal energy needs, the environmental impact of the manufacturing process was reduced to a Global Warming Potential of llkg CO2 Equiv per kg of carbon produced. The demonstration plant requires a capital investment of US$lOA million to give a competitive bagasse-based activated carbon (BPAC) selling price of US$1.80 per kg and IRR, ROI and Investment payback time of 17.93%, 23.93% and 3.80 years respectively. A sensitivity analysis was also carried out to investigate the effect of possible variation in the main project forecasts which are BPAe selling price , bagasse buying price, capital investment and production costs on IRR, ROI and payback time . The benefits of process integration within a sugar mill would be expected to improve the business feasibility ; If bagasse was free the IRR would increase to 28.59% and even better to 32.12% if extra boiler and electricity capacity was also available at the mill. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2005.
79

Vacuum refining of copper matte

Allaire, André. January 1986 (has links)
No description available.
80

Sugarcane polyphenol oxidase / Carolyn Bucheli.

Bucheli, Carolyn January 1995 (has links)
Copy of author's previously published article inserted. / Bibliography: leaves 180-195. / xii, 195 leaves : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Investigation of the contribution of polyphenol oxidase (PPO) and peroxidase (POD) to enzymic browning in sugarcane juice. / Thesis (Ph.D.)--University of Adelaide, Dept. of Horticulture, Viticulture and Oenology, 1995

Page generated in 0.4063 seconds