• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 35
  • 18
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 186
  • 94
  • 87
  • 36
  • 28
  • 27
  • 26
  • 26
  • 26
  • 24
  • 22
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Monitoring near-surface soil water loss with time domain reflectometry and weighing lysimeters

Young, Michael Howard,1961- January 1995 (has links)
Three goals of this research were: 1) to develop a field-scale research facility that could be used for conducting a variety of soil water experiments in both deep (greater than 2 meters) and near-surface soils where the soil water balance could be accurately determined; 2) to develop a transient experimental technique for calibrating time domain reflectometry (TDR) probes; and 3) to study the use of vertically-installed TDR probes for measuring near-surface soil water movement in a field setting, and to compare these measurements with those made by the weighing lysimeter. The weighing lysimeter facility consists of two lysimeter tanks, 4.0 m deep and 2.5 m in diameter, which rest atop a scale with a resolution of ±200 g, equivalent to ±0.04 mm of water on the surface. Data collection is completely automated with a data logger and personal computer. Both lysimeters are instrumented with TDR probes, tensiometers, and pore water solution samplers; thermocouples are installed in one lysimeter for measuring temperature. The TDR probes were calibrated using a transient method known as upward infiltration. The method is rapid, allows the soil to remain unchanged during the experiment, and provides many data points. The upward infiltration method was tested using two different length probes in soils of three textures. Results show that the upward infiltration method is stable, repeatable, and provides accurate dielectric constants and calibration curves. Four, vertically-installed TDR probes of different lengths (200, 400, 600, and 800 mm) were placed in the lysimeter at ground surface to measure water added and water lost during a one-month period in the presence of daily irrigated turfgrass. The purpose of this study was to compare changes in soil water storage as measured by the TDR system, against measurements made using the weighing lysimeter. The TDR probes detected diurnal changes in water content due to irrigation and evapotranspiration, even when these amounts changed slightly from day to day. The TDR probes underestimated the measurements of both water added and water loss, as confirmed using measurements from the weighing lysimeter. The presence of a 47-mm thick biomass above the TDR waveguides retained water that otherwise would have percolated the soil surface into the measurement domain of the probes. Addition and loss of water in the biomass were recorded by the lysimeter, but not by the TDR probes, thus explaining the underestimation. Modeling of near-surface water movement with the HYDRUS model showed very similar water movement behavior as measured by the TDR probes. This confirms our hypothesis that TDR would a useful tool for measuring diurnal changes in water content for irrigation scheduling.
12

The Application of time domain reflectometry in solute transport experiments

Yu, Chunming,1957- January 1998 (has links)
Contaminants can enter groundwater through the unsaturated zone as dissolved solutes. To predict the location and extent of these contaminants, transport parameters such as pore water velocity y and dispersion coefficient D are required. These parameters are often obtained through transport experiments. The goal of this study is to determine y and D using time domain reflectometry (TDR) technique. Using TDR for transport experiments under unsaturated conditions, we investigated the effects of volumetric water content θᵥ, distance of flow path, and draining-wetting history on D. TDR was used to measure θᵥ, and salt concentration in twenty-one unsaturated column experiments. The 105 cm-long column was homogeneously packed with silica sand (particle size: 53 to 425 pm). Ten TDR probes at ten depths were used to obtain in situ breakthrough curves and a chloride electrode was used to measure effluent breakthrough curves at the bottom of the column. A 35 mM NaC1 (sodium chloride) was used as the tracer with 20 mM NaC1 as background solution. We developed a three-parameter expression relating θᵥ, to measured dielectric constant Kₐ: θᵥ =aKₐᵅ + b. This calibration expression fits as closely or better than the "universal polynomial" and is also consistent with the well-known mixing model. For an isotropic soil with homogeneous water distribution, this expression is further simplified to two parameters by taking α = 0.5. The effects of temperature, porosity, soil solid and bound water can be taken into account by varying a and b of the two-parameter expression. TDR measurements have been shown to be sensitive to bound water and not particular sensitive to the other factors. To calculate y and D from breakthrough curves of step-input experiments, a new moment analysis method has been developed. The transport parameters obtained from this new method show a little difference from the parameters determined from the convection-dispersion equation using the CXTFIT model (a published computer program for estimating solute transport parameters from observed breakthrough curves). Our results demonstrated that D is dependent on measurement methods and concentrations of experimental solutions.
13

The use of time domain reflectometry probes for the moisture monitoring of a drilled shaft retaining wall in expansive clay

Dellinger, Gregory Fred 29 September 2011 (has links)
Currently there is no consensus on how to account for the lateral earth pressures when designing drilled shaft retaining walls in expansive clay soils. Typically an equivalent fluid pressure is assumed which can range from 40 psf/ft to over 100 psf/ft. The range of assumptions currently in use can cause more than a factor of two difference in the maximum bending moment in the shaft. This range could cause the walls to be over-designed or under-designed. A full-scale test drilled shaft retaining wall was constructed on a site underlain by approximately 50 feet of the expansive Taylor Clay. Analysis of the wall is intended to provide information to be considered in design about the effects of the moisture cycles which cause shrinking and swelling. In order to monitor the moisture changes within the clay, 20 Time Domain Reflectometry (TDR) probes were installed behind the wall. This thesis discusses the monitoring plan, calibration, installation, and initial results from these probes. The objectives of this thesis is to provide information regarding the site conditions and reasons for using TDR probes for this project and to describe the monitoring plan, calibration, installation, and the field performance of the TDR probes and the moisture values that have been seen on the site to date. Previous studies show that difficulties can be expected when using TDR probes in highly plastic clays. Results from this study are typical of these results seen previously. The initial results show that 4 of the 20 probes are recording reasonable waveforms. However, the waveforms cannot be analyzed using conventional methods. This result was because the waveform reflection that indicates the end of the probe cannot be defined due to attenuation of the signal, which is typical of highly conductive soils. Also, the large amount of scatter in the electrical conductivity values does not allow for the moisture content to be correlated to the electrical conductivity. In order to use the TDR probes to measure moisture content at the project site, an alternative method needs to be employed to analyze available waveforms. If another method can be successfully employed for the functional probes, the subsequent step would involve recovering the probes that are not functioning properly in order to get a moisture profile along the full cantilevered height of the wall. Direct moisture measurements should also be taken periodically to provide a moisture profile. / text
14

Fundus Spectroscopy and Studies in Retinal Oximetry Using Intravitreal Illumination

Salyer, David Alan January 2006 (has links)
This dissertation documents the development of a new illumination technique for use in the studies of retinal oximetry and fundus spectroscopy. Intravitreal illumination is a technique where the back of the eye is illuminated trans-sclerally using a scanning monochromator coupled into a fiber optic illuminator. Retinal oximetry is the processof measuring the oxygen saturation of blood contained in retinal vessels by quantitative measurement of the characteristic color shift seen as blood oxygen saturation changes from oxygenated blood (reddish) to deoxygenated blood (bluish). Retinal oximetry was first attempted in 1963 but due to a variety of problems with accuracy and difficulty of measurement, has not matured to the point of clinical acceptabilityor commercial viability.Accurate retinal oximetry relies in part on an adequate understanding of the spectral reflectance characteristics of the fundus. The use of intravitreal illumination allows new investigations into the spectral reflectance properties of the fundus. The results of much research in fundus reflectance and retinal oximetry is detailed in thisdocument, providing new insight into both of these related fields of study.Intravitreal illumination has been used to study retinal vessel oximetry and fundus reflectometry resulting in several important findings that are presented in this document. Studies on enucleated swine eyes have provided new insight into the bidirectional reflectance distribution function of the fundus. Research on live swine hasshown accurate measurement of retinal vessel oxygen saturation and provided the first in vivo spectral transmittance measurement of the sensory retina. A secondary discovery during this research suggests that vitrectomy alters the retinal vasculature,a finding that should spawn new research in its own right.
15

Soil management in an established irrigated vineyard, on a hard red duplex soil

Wheaton, Ashley D. Unknown Date (has links) (PDF)
Hard red duplex soils (HRDS) cannot sustain economically productive vineyards without careful management. An experiment was conducted at Rosbercon Vineyard, Picola from 1995 to 1998 in a vineyard block of Chardonnay on Ramsey rootstock planted in 1972. The hypotheses tested were: a) transient waterlogging decreases root growth and grapevine performance, and b) hardening of soil decreases root growth and grapevine performance. (For complete summary open document)
16

Soil moisture determination by frequency and time domain techniques

Antle, Chad L. January 1997 (has links)
Thesis (M.S.)--Ohio University, March, 1997. / Title from PDF t.p.
17

The integration of a high voltage cable fault location instrument with modern information technology

Kelly, Roger James January 2002 (has links)
Dissertation submitted in compliance with the requirements for Master's Degree in Technology: Electrical Engineering (Light Current), Durban Institute of Technology, 2002. / Modern society as a whole seems destined to have an ever-increasing demand for power for both industrial and domestic use, as continued population growth means that cities, suburbs and industrial areas become larger and denser. At the same time the trend toward increased productivity in all segments of industry is influencing the development and techniques employed at locating faults in power cables and networks to ensure only limited downtime and reduced direct and indirect costs associated with the location of faults / M
18

Supporting Aircraft Deployment of NASA's Next-Generation GNSS-R Instrument in New Zealand

Linnabary, Ryan January 2021 (has links)
No description available.
19

Investigation of Advanced Spaceborne GNSS-R Techniques Usingthe SMAP Satellite

Buchanan, Matthew L. January 2019 (has links)
No description available.
20

Probing the Hydration of Ultrathin Antifouling Adlayers using Neutron Reflectometry

Pawlowska, Natalia 04 July 2014 (has links)
Adverse interaction and subsequent adsorption of biomolecular species (i.e. fouling) pose a great hindrance for medical and clinical applications (e.g. biosensors). Research into the mechanism behind antifouling coatings have shown a strong link between surface hydration and antifouling behaviour due to the existence of a ‘water barrier’ which prevents proteins from adsorbing onto the surface. In a previous study, a short, mono(ethylene-glycol) silane adlayer (MEG-OH) showed significantly different antifouling behaviour in comparison to its homolog – lacking the internal ether oxygen (OTS-OH). In the present work, neutron reflectometry (and modeling) was used to investigate the water density profiles at MEG-OH and OTS-OH silane adlayers on quartz and Si/SiO2 to determine whether the internal ether oxygen affects the adlayers’ interaction with water. Despite the limitations of studying such ultrathin organic films, the two systems showed different hydration profiles supporting the link between surface hydration and antifouling.

Page generated in 0.0442 seconds