• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Selectivity of Porous Composite Materials for Multispecies mixtures : Application to Fuel Cells / Sélectivité des matériaux composites poreux pour mélanges multi-espèces : application aux piles à combustible

Najmi, Hussain 07 February 2018 (has links)
L'utilisation de pile à combustible à bord d'un avion impose d'extraire des espèces légères (telles que l'hydrogène et les hydrocarbures légers) du combustible liquide qui est stocké et utilisé, éventuellement à des températures où se produit une pyrolyse du carburant. La porosité d’un matériau composite pourrait être utilisée pour filtrer les espèces sélectionnées. L'efficacité de séparation d’un matériau poreux dépend de deux facteurs qui sont: la perméance et la sélectivité.Ces facteurs sont souvent déterminés avec une configuration classique utilisant un échantillon en forme d’un disque d’un matériau poreux. Cependant, cette configuration est loin de la réalité qui est composée de tubes. Par conséquent, une étude est réalisée en considérant les deux configurations en utilisant différents types de disques poreux et un tube composite poreux. Ensuite, les résultats obtenus sont comparés et les différents facteurs affectant le processus de perméation sont étudiés.Après cela, un banc d'essai innovant est développé et utilisé afin de déterminer la distribution axiale des deux propriétés d'un tube poreux en acier inoxydable (c'est-à-dire la perméance et la sélectivité). Les effets des conditions opératoires (débit massique d'entrée et pression d'entrée) ont été étudiés. Une nouvelle forme radiale de l'équation de perméabilité aux gaz a été développée pour ce travail et sa relation avec la perméabilité de Darcy est établie. La variation de pression le long de l'axe central du tube est déterminée. Les effets de cette variation de pression sur les propriétés physiques des gaz tels que la densité et la viscosité sont déterminés et leur influence sur la sélectivité est étudiée en utilisant différents gaz tels que l'azote, le dioxyde de carbone, le méthane et l'hélium.Plus tard, un mélange binaire de dioxyde de carbone (CO2) et d'Azote (N2) est considéré sous trois compositions volumétriques différentes (50/50%, 60/40% et 70/30%) afin d'évaluer la propriété de séparation de gaz d’un tube poreux (effet de membrane). La perméabilité au gaz pur, la perméabilité du mélange, la sélectivité idéale et la sélectivité de séparation de ce tube sont déterminées pour un débit massique et une pression d'entrée différents. Les facteurs affectant les distributions de CO2 et de N2 à l'intérieur du tube poreux sont étudiés.Les résultats obtenus peuvent être utiles pour comprendre les facteurs affectant la séparation des gaz dans le cas d'un tube poreux pour des processus industriels continus. / Using Fuel Cell on board of aircraft imposes to extract light species (such as Hydrogen and light hydrocarbons) from the liquid fuel which is stored and used, possibly at temperatures where a fuel pyrolysis occurs. Porosity of a composite material could be used to filtrate the selected species. The separation efficiency of a porous material depends upon two factors which are: Permeance and Selectivity.These factors are often determined with a classical configuration using a porous disk sample. However, this configuration is far from the realistic one consisting of tubes. Therefore, a study is performed considering both configurations using different types of porous disks and a porous composite tube. Then, the obtained results are compared and the different factors affecting the permeation process are studied.After that, an innovative permselectivity test bench is developed and used in order to determine the axial distribution of the two properties of a stainless steel porous tube (i.e. permeance and selectivity). The effects of the operating conditions (inlet mass flowrate and inlet pressure) have been studied. A new radial form of the gas permeability equation has been developed for this work and its relationship with Darcy‘s permeability is established. The pressure variation along the centre axis of the tube is determined. The effects of this pressure variation on the physical properties of gases such as density and viscosity are determined and their influence on the selectivity is studied using different gases such as Nitrogen, Carbon dioxide, Methane, and Helium. Later, a binary mixture of Carbon Dioxide (CO2) and of Nitrogen (N2) is considered under three different volumetric compositions (50/50%, 60/40% and 70/30%) in order to evaluate the separation property of the porous stainless steel tube (membrane effect). The pure gas permeability, the mixture permeability, the ideal selectivity and the separation selectivity of this tube are determined for a different mass flowrate and inlet pressure. The factors affecting the distributions of CO2 and N2 inside the porous tube are investigated. The obtained results can be useful to understand the factors affecting gas separation in case of a porous tube for continuous industrial processes
2

Analysis Of Regenerative Cooling In Liquid Propellant Rocket Engines

Boysan, Mustafa Emre 01 December 2008 (has links) (PDF)
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, recent studies have shown that by increasing the coolant channel height-to-width aspect ratio and changing the cross sectional area in non-critical regions for heat flux, the rocket combustion chamber gas side wall temperature can be reduced significantly without an increase in the coolant pressure drop. In this study, the regenerative cooling of a liquid propellant rocket engine has been numerically simulated. The engine has been modeled to operate on a LOX/Kerosene mixture at a chamber pressure of 60 bar with 300 kN thrust and kerosene is considered as the coolant. A numerical investigation was performed to determine the effect of different aspect ratio cooling channels and different number of cooling channels on gas-side wall and coolant temperature and pressure drop in cooling channel.
3

Experimental study on the effect of rocket nozzle wall materials on the stability of methane / Experimentell studie av effekten av raketmunstycksväggmaterial på stabiliteten av metan

L. Holmboe, Thomas January 2023 (has links)
There has recently been an increased interest in methane as a rocket propellant due to its physical properties as well as the possibility of in-situ resource utilization in places like Mars. As part of ESA’s Future Launcher Preparatory Program, KTH in cooperation with GKN Aerospace has started the MERiT program, which seeks to study the characteristics of methane under conditions found in rocket nozzle cooling channels. In particular, the current work examines the influence of different wall temperatures, fluid flow rates, and fluid residence times on methane pyrolysis due to the catalytic properties of nickel based metals. Pyrolysis is the thermo-catalytic decomposition of methane, which results in the creation of hydrogen and solid carbon in the cooling channels. This can affect the performance of the rocket engine, the cooling channels, as well as the lifespan of the engine, which makes the process important to quantify when designing highly reusable engines. A chemical kinetics computer model has been developed, which has been used to quantify the most important parameters for methane pyrolysis. Based on these results, a small-scale pyrolysis experimental setup has been developed and used to characterise methane pyrolysis for different material temperatures and gas flow rates. The experimental setup has been proven to work and consistently provide pyrolysis at temperatures between 600 ◦C to 700 ◦C, although more work on the data collection side, in particular with regards to a gas chromatograph and a scanning electron microscope, is required to quantify and compare different experiments.
4

Conjugate Heat Transfer Analysis of Combined Regenerative and Discrete Film Cooling in a Rocket Nozzle

Pearce, Charlotte M 01 January 2016 (has links)
Conjugate heat transfer analysis has been carried out on an 89kN thrust chamber in order to evaluate whether combined discrete film cooling and regenerative cooling in a rocket nozzle is feasible. Several cooling configurations were tested against a baseline design of regenerative cooling only. New designs include combined cooling channels with one row of discrete film cooling holes near the throat of the nozzle, and turbulated cooling channels combined with a row of discrete film cooling holes. Blowing ratio and channel mass flow rate were both varied for each design. The effectiveness of each configuration was measured via the maximum hot gas-side nozzle wall temperature, which can be correlated to number of cycles to failure. A target maximum temperature of 613K was chosen. Combined film and regenerative cooling, when compared to the baseline regenerative cooling, reduced the hot gas side wall temperature from 667K to 638K. After adding turbulators to the cooling channels, combined film and regenerative cooling reduced the temperature to 592K. Analysis shows that combined regenerative and film cooling is feasible with significant consequences, however further improvements are possible with the use of turbulators in the regenerative cooling channels.
5

Énergie recyclée par conversion chimique pour application à la combustion dans le domaine aérospatial (ERC3) / Energy recovery by means of chemical conversion for use in aerospace combustion

Taddeo, Lucio 24 October 2017 (has links)
Le refroidissement actif par endocarburant permet d’assurer la tenue thermique d’un superstatoréacteur pour le vol hypersonique. Néanmoins, l’utilisation de cette technologie de refroidissement passe par la maitrise du couplage combustion – pyrolyse, qui fait de la définition d’une stratégie de contrôle du moteur un véritable défi. Une étude expérimentale a été réalisée afin d’analyser l’effet du paramètre de commande principal, le débit de combustible, sur des paramètres de sorties pertinents, à l’aide d’un dispositif de test spécifiquement conçu pour appréhender le couplage combustion – pyrolyse. Ceci a permis d’étudier la dynamique d’un circuit régénératif par rapport à ce paramètre de commande. Une étude cinétique paramétrique sur la pyrolyse du carburant a été conduite en parallèle de celle expérimentale afin d’affiner l’analyse et améliorer l’interprétation des expériences. La décomposition du carburant utilisé pour les tests (éthylène) a été prise en compte grâce à un mécanisme cinétique détaillé (153 espèces, 1185 réactions chimiques). / Regenerative cooling is a well-known cooling technique, suitable to ensure scramjets thermal protection. The development of regeneratively cooled engines using an endothermic propellant is a challenging task, especially because of the strong coupling between fuel decomposition and combustion, which makes the definition of an engine regulation strategy very hard. An experimental study, aiming at identifying the effect of fuel mass flow rate variations on a fuel cooled-combustor in terms of system dynamics has been carried out. A remotely controlled fuel-cooled combustor, designed by means of CDF calculations and suitable for the experimental analysis of combustion-pyrolysis coupling, has been used. In order to improve tests results analysis, a parametric study to characterize fuel decomposition has also been realized. The pyrolysis has been modeled by using a detailed kinetic mechanism (153 species, 1185 chemical reactions).

Page generated in 0.0847 seconds