• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of Information in Online Learning

Bartók, Gábor Unknown Date
No description available.
2

DISTRIBUTED NEAREST NEIGHBOR CLASSIFICATION WITH APPLICATIONS TO CROWDSOURCING

Jiexin Duan (11181162) 26 July 2021 (has links)
The aim of this dissertation is to study two problems of distributed nearest neighbor classification (DiNN) systematically. The first one compares two DiNN classifiers based on different schemes: majority voting and weighted voting. The second one is an extension of the DiNN method to the crowdsourcing application, which allows each worker data has a different size and noisy labels due to low worker quality. Both statistical guarantees and numerical comparisons are studied in depth.<br><div><br></div><div><div>The first part of the dissertation focuses on the distributed nearest neighbor classification in big data. The sheer volume and spatial/temporal disparity of big data may prohibit centrally processing and storing the data. This has imposed a considerable hurdle for nearest neighbor predictions since the entire training data must be memorized. One effective way to overcome this issue is the distributed learning framework. Through majority voting, the distributed nearest neighbor classifier achieves the same rate of convergence as its oracle version in terms of the regret, up to a multiplicative constant that depends solely on the data dimension. The multiplicative difference can be eliminated by replacing majority voting with the weighted voting scheme. In addition, we provide sharp theoretical upper bounds of the number of subsamples in order for the distributed nearest neighbor classifier to reach the optimal convergence rate. It is interesting to note that the weighted voting scheme allows a larger number of subsamples than the majority voting one.</div></div><div><br></div><div>The second part of the dissertation extends the DiNN methods to the application in crowdsourcing. The noisy labels in crowdsourcing data and different sizes of worker data will deteriorate the performance of DiNN methods. We propose an enhanced nearest neighbor classifier (ENN) to overcome this issue. Our proposed method achieves the same regret as its oracle version on the expert data with the same size. We also propose two algorithms to estimate the worker quality if it is unknown in practice. One method constructs the estimators for worker quality based on the denoised worker labels through applying kNN classifier on expert data. Unlike previous worker quality estimation methods, which have no statistical guarantee, it achieves the same regret as the ENN with observed worker quality. The other method estimates the worker quality iteratively based on ENN, and it works well without expert data required by most previous methods.<br></div>
3

REINFORCEMENT LEARNING FOR CONCAVE OBJECTIVES AND CONVEX CONSTRAINTS

Mridul Agarwal (13171941) 29 July 2022 (has links)
<p> </p> <p>Formulating RL with MDPs work typically works for a single objective, and hence, they are not readily applicable where the policies need to optimize multiple objectives or to satisfy certain constraints while maximizing one or multiple objectives, which can often be conflicting. Further, many applications such as robotics or autonomous driving do not allow for violating constraints even during the training process. Currently, existing algorithms do not simultaneously combine multiple objectives and zero-constraint violations, sample efficiency, and computational complexity. To this end, we study sample efficient Reinforcement Learning with concave objective and convex constraints, where an agent maximizes a concave, Lipschitz continuous function of multiple objectives while satisfying a convex cost objective. For this setup, we provide a posterior sampling algorithm which works with a convex optimization problem to solve for the stationary distribution of the states and actions. Further, using our Bellman error based analysis, we show that the algorithm obtains a near-optimal Bayesian regret bound for the number of interaction with the environment. Moreover, with an assumption of existence of slack policies, we design an algorithm that solves for conservative policies which does not violate  constraints and still achieves the near-optimal regret bound. We also show that the algorithm performs significantly better than the existing algorithm for MDPs with finite states and finite actions.</p>
4

Environment Adaptive Regret Analysis in Bandit Problems / バンディット問題における環境適応的リグレット解析

Tsuchiya, Taira 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24939号 / 情博第850号 / 新制||情||142(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)准教授 本多 淳也, 教授 田中 利幸, 教授 鹿島 久嗣 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
5

On the Value of Prediction and Feedback for Online Decision Making With Switching Costs

Ming Shi (12621637) 01 June 2022 (has links)
<p>Online decision making with switching costs has received considerable attention in many practical problems that face uncertainty in the inputs and key problem parameters. Because of the switching costs that penalize the change of decisions, making good online decisions under such uncertainty is known to be extremely challenging. This thesis aims at providing new online algorithms with strong performance guarantees to address this challenge.</p> <p><br></p> <p>In part 1 and part 2 of this thesis, motivated by Network Functions Virtualization and smart grid, we study competitive online convex optimization with switching costs. Specifically, in part 1, we focus on the setting with an uncertainty set (one type of prediction) and hard infeasibility constraints. We develop new online algorithms that can attain optimized competitive ratios, while ensuring feasibility at all times. Moreover, we design a robustification procedure that helps these algorithms obtain good average-case performance simultaneously. In part 2, we focus on the setting with look-ahead (another type of prediction). We provide the first algorithm that attains a competitive ratio that not only decreases to 1 as the look-ahead window size increases, but also remains upper-bounded for any ratio between the switching-cost coefficient and service-cost coefficient.</p> <p><br></p> <p>In part 3 of this thesis, motivated by edge computing with artificial intelligence, we study bandit learning with switching costs where, in addition to bandit feedback, full feedback can be requested at a cost. We show that, when only 1 arm can be chosen at a time, adding costly full-feedback is not helpful in fundamentally reducing the Θ(<em>T</em>2/3) regret over a time-horizon <em>T</em>. In contrast, when 2 (or more) arms can be chosen at a time, we provide a new online learning algorithm that achieves a significantly smaller regret equal to <em>O</em>(√<em>T</em>), without even using full feedback. To the best of our knowledge, this type of sharp transition from choosing 1 arm to choosing 2 (or more) arms has never been reported in the literature.</p>
6

Contributions to Multi-Armed Bandits : Risk-Awareness and Sub-Sampling for Linear Contextual Bandits / Contributions aux bandits manchots : gestion du risque et sous-échantillonnage pour les bandits contextuels linéaires

Galichet, Nicolas 28 September 2015 (has links)
Cette thèse s'inscrit dans le domaine de la prise de décision séquentielle en environnement inconnu, et plus particulièrement dans le cadre des bandits manchots (multi-armed bandits, MAB), défini par Robbins et Lai dans les années 50. Depuis les années 2000, ce cadre a fait l'objet de nombreuses recherches théoriques et algorithmiques centrées sur le compromis entre l'exploration et l'exploitation : L'exploitation consiste à répéter le plus souvent possible les choix qui se sont avérés les meilleurs jusqu'à présent. L'exploration consiste à essayer des choix qui ont rarement été essayés, pour vérifier qu'on a bien identifié les meilleurs choix. Les applications des approches MAB vont du choix des traitements médicaux à la recommandation dans le contexte du commerce électronique, en passant par la recherche de politiques optimales de l'énergie. Les contributions présentées dans ce manuscrit s'intéressent au compromis exploration vs exploitation sous deux angles spécifiques. Le premier concerne la prise en compte du risque. Toute exploration dans un contexte inconnu peut en effet aboutir à des conséquences indésirables ; par exemple l'exploration des comportements d'un robot peut aboutir à des dommages pour le robot ou pour son environnement. Dans ce contexte, l'objectif est d'obtenir un compromis entre exploration, exploitation, et prise de risque (EER). Plusieurs algorithmes originaux sont proposés dans le cadre du compromis EER. Sous des hypothèses fortes, l'algorithme MIN offre des garanties de regret logarithmique, à l'état de l'art ; il offre également une grande robustesse, contrastant avec la forte sensibilité aux valeurs des hyper-paramètres de e.g. (Auer et al. 2002). L'algorithme MARAB s'intéresse à un critère inspiré de la littérature économique(Conditional Value at Risk), et montre d'excellentes performances empiriques comparées à (Sani et al. 2012), mais sans garanties théoriques. Enfin, l'algorithme MARABOUT modifie l'estimation du critère CVaR pour obtenir des garanties théoriques, tout en obtenant un bon comportement empirique. Le second axe de recherche concerne le bandit contextuel, où l'on dispose d'informations additionnelles relatives au contexte de la décision ; par exemple, les variables d'état du patient dans un contexte médical ou de l'utilisateur dans un contexte de recommandation. L'étude se focalise sur le choix entre bras qu'on a tirés précédemment un nombre de fois différent. Le choix repose en général sur la notion d'optimisme, comparant les bornes supérieures des intervalles de confiance associés aux bras considérés. Une autre approche appelée BESA, reposant sur le sous-échantillonnage des valeurs tirées pour les bras les plus visités, et permettant ainsi de se ramener au cas où tous les bras ont été tirés un même nombre de fois, a été proposée par (Baransi et al. 2014). / This thesis focuses on sequential decision making in unknown environment, and more particularly on the Multi-Armed Bandit (MAB) setting, defined by Lai and Robbins in the 50s. During the last decade, many theoretical and algorithmic studies have been aimed at cthe exploration vs exploitation tradeoff at the core of MABs, where Exploitation is biased toward the best options visited so far while Exploration is biased toward options rarely visited, to enforce the discovery of the the true best choices. MAB applications range from medicine (the elicitation of the best prescriptions) to e-commerce (recommendations, advertisements) and optimal policies (e.g., in the energy domain). The contributions presented in this dissertation tackle the exploration vs exploitation dilemma under two angles. The first contribution is centered on risk avoidance. Exploration in unknown environments often has adverse effects: for instance exploratory trajectories of a robot can entail physical damages for the robot or its environment. We thus define the exploration vs exploitation vs safety (EES) tradeoff, and propose three new algorithms addressing the EES dilemma. Firstly and under strong assumptions, the MIN algorithm provides a robust behavior with guarantees of logarithmic regret, matching the state of the art with a high robustness w.r.t. hyper-parameter setting (as opposed to, e.g. UCB (Auer 2002)). Secondly, the MARAB algorithm aims at optimizing the cumulative 'Conditional Value at Risk' (CVar) rewards, originated from the economics domain, with excellent empirical performances compared to (Sani et al. 2012), though without any theoretical guarantees. Finally, the MARABOUT algorithm modifies the CVar estimation and yields both theoretical guarantees and a good empirical behavior. The second contribution concerns the contextual bandit setting, where additional informations are provided to support the decision making, such as the user details in the ontent recommendation domain, or the patient history in the medical domain. The study focuses on how to make a choice between two arms with different numbers of samples. Traditionally, a confidence region is derived for each arm based on the associated samples, and the 'Optimism in front of the unknown' principle implements the choice of the arm with maximal upper confidence bound. An alternative, pioneered by (Baransi et al. 2014), and called BESA, proceeds instead by subsampling without replacement the larger sample set. In this framework, we designed a contextual bandit algorithm based on sub-sampling without replacement, relaxing the (unrealistic) assumption that all arm reward distributions rely on the same parameter. The CL-BESA algorithm yields both theoretical guarantees of logarithmic regret and good empirical behavior.

Page generated in 0.0706 seconds