11 |
Mechanical behaviour of fibre reinforced unsaturated clay. This investigation is to determine the improvement in the mechanical behaviour of unsaturated clayey soil after inclusion of carpet fibre wasteSaad, Suleiman S.E. January 2016 (has links)
To acquire deeper understanding and insights into the mechanical behaviour of fibre reinforced saturated/unsaturated cohesive soils, a programme of work was designed and included. 1) Conducting standard Consolidation Undrained (CU) tests to investigate mechanical behaviour of non-reinforced fully saturated soil. 2) Studying the strength of fibre reinforced clay though unconfined compression tests. 3) Testing the behaviour of unsaturated reinforced soil in unsaturated triaxial tests. 4) Determining the soil-water characteristic curves (SWCC) on soil sample with different fibre content.
The investigation was undertaken on a clay of low plasticity index. Samples tested with addition of 1, 3 and 5 % fibre content and different values of matric suction of 50, 100 and 200 kPa, one of the challenges that were encountered in this research are how to prepare homogenous samples. A method for prepared compacted fibre reinforced soils with improved fibre distribution and density profile has been proposed and examined.
The test results indicated that waste carpet fibres increase the shear strength of unsaturated clay soils. It was also found that relative increase in strength is also a function of applied suction. An increase in waste carpet fibres was found to reduce the hysteresis of soil.
A data analysis conducted on the results of unsaturated tests as a function of fibre content and matric suction. The behaviour modelled was shown to be a perfect fit with the experimental data.
|
12 |
Impact of Carpet Waste Fibre Addition on Swelling Properties of Compacted ClaysMirzababaei, M., Miraftab, M., Mohamed, Mostafa H.A., McMahon, P. January 2012 (has links)
No / Municipalities and recycling and environmental authorities are concerned about the growing amount of carpet waste produced by household, commercial and industrial sectors. It is reported that 500,000 tonnes of carpet waste fibre are plunged into landfills annually in the UK. In the United States of America, around 10 million tonnes of textile waste was generated in 2003. In geotechnical engineering, expansive clay soils are categorised as problematic soils due to their swelling behaviour upon increase in the moisture content. The problematic nature of such soils is intensified with the increase in the plasticity index. This paper presents results of a comprehensive investigation into utilisation of carpet waste fibres in order to improve the swelling characteristics of compacted cohesive soils. Therefore, two different clay soils with markedly different plasticity indices (i.e. 17.0 and 31.5 %) were treated with two different types of carpet waste fibre. Waste fibres were added to prepare specimens with fibre content of 1, 3 and 5 % by dry weight of soil. Soil specimens with different dry unit weights and moisture contents were prepared so as to the swelling behaviour of fibre reinforced compacted clays is completely attained under various scenarios. The results indicated that the behaviour of the fibre reinforced soils seems highly dependent on the initial compaction state and secondary on the moisture content. It was found that the swelling pressure drops rapidly as the percentage of fibre increases in samples prepared at the maximum dry unit weight and optimum moisture content. Reducing the dry unit weight, while maintaining constant moisture content or increasing the moisture content at constant dry unit weight was found to reduce the swelling pressure.
|
13 |
Avaliação experimental de protótipos de estruturas de contenção em solo reforçado com geotêxtil / Field monitoring behavior of geotextile-reinforced soil retaining wall prototypesBenjamim, Carlos Vinicius dos Santos 09 June 2006 (has links)
Apesar das vantagens relacionadas ao uso de estruturas de contenção em solo reforçado, a maioria das obras em nosso país ainda é executada por soluções convencionais. A ausência de um conhecimento mais profundo sobre o real comportamento das estruturas em solo reforçado, principalmente em termos de deslocamentos, certamente impede uma utilização mais intensa desse tipo de obra no Brasil. Com isso, para contribuir para um melhor entendimento do desempenho de estruturas em solo reforçado, foram construídos oito protótipos de estrutura de contenção em solo reforçado com geotêxtil, com 4,0 m de altura cada. Todas as estruturas foram instrumentadas, principalmente visando os deslocamentos, para avaliar o comportamento de campo. Adicionalmente, foi realizada a análise, em longo prazo, de um talude íngreme com 15,3 m de altura, construído no estado americano de Idaho, em que foram realizadas leituras até cinco anos após o fim da construção. Esse trabalho apresenta os resultados de cada protótipo construído, juntamente com os resultados do talude íngreme em Idaho, tanto em curto, quanto em longo prazo. As análises desenvolvidas compreendem, além da avaliação dos resultados individuais de cada estrutura, uma análise paramétrica entre todos os protótipos, investigando entre outros fatores, o tipo de solo, tipo de geossintético e geometria interna das estruturas. Além disso, foi realizada uma abordagem especial sobre a análise em longo prazo do protótipo 7. Dentre as conclusões mais importantes obtidas nesta pesquisa, podem-se citar as grandes deformações de fluência registradas no protótipo 7, a tendência de formação de uma superfície potencial de ruptura linear para os protótipos construídos com solo granular e de espiral logarítmica para os protótipos construídos com solos coesivos, a importância da coesão no bom comportamento das estruturas e a redução das movimentações verticais das estruturas com o acréscimo do teor de areia na granulometria do solo / Despite the important advantages associated with the use of geotextiles as reinforcement, most retaining walls in Brazil still use more conventional. The lack of field monitoring data regarding the internal and face displacements of these structures has certainly prevented broader use of this reinforced soil technology. This study addresses several aspects related to the behavior of geotextile-reinforced soil structures, such as the deformability of reinforcement materials under the confinement of soil, and quantification of the actual failure mechanisms. To achieve these goals, eight 4.0 m high geotextile-reinforced soil retaining wall prototypes were built and instrumented in order to quantify their behavior under ambient atmospheric conditions. Granular and poorly draining backfills were used in this study. Innovative construction methods and instrumentation were developed specifically for this research program. A significant laboratory testing program was conducted to quantify the stress-strain properties of the soils and geosynthetics involved in the construction of the walls. As a reference, the behaviors of these prototype structures were compared with that of a long term analysis of a steep slope in Idaho, USA. This wall is 15.3 m high, with displacement measurements carried out until five years after the end of the construction. A parametric analysis was conducted for the prototypes, in order to investigate the effects of soil type, reinforcement type and internal geometry of the structures. Among the most important conclusions obtained in this research, it is the large creep strains observed in prototype 7, the tendency of a linear potential slip surface observed for the walls constructed with granular backfills, and a log spiral slip surface for the prototypes constructed with cohesive backfills, the importance of the apparent cohesion in the behavior of the structures, and the reduction of the vertical movements of the structures with the increase of the amount of sand in the grain size distribution of the soil
|
14 |
Avaliação experimental de protótipos de estruturas de contenção em solo reforçado com geotêxtil / Field monitoring behavior of geotextile-reinforced soil retaining wall prototypesCarlos Vinicius dos Santos Benjamim 09 June 2006 (has links)
Apesar das vantagens relacionadas ao uso de estruturas de contenção em solo reforçado, a maioria das obras em nosso país ainda é executada por soluções convencionais. A ausência de um conhecimento mais profundo sobre o real comportamento das estruturas em solo reforçado, principalmente em termos de deslocamentos, certamente impede uma utilização mais intensa desse tipo de obra no Brasil. Com isso, para contribuir para um melhor entendimento do desempenho de estruturas em solo reforçado, foram construídos oito protótipos de estrutura de contenção em solo reforçado com geotêxtil, com 4,0 m de altura cada. Todas as estruturas foram instrumentadas, principalmente visando os deslocamentos, para avaliar o comportamento de campo. Adicionalmente, foi realizada a análise, em longo prazo, de um talude íngreme com 15,3 m de altura, construído no estado americano de Idaho, em que foram realizadas leituras até cinco anos após o fim da construção. Esse trabalho apresenta os resultados de cada protótipo construído, juntamente com os resultados do talude íngreme em Idaho, tanto em curto, quanto em longo prazo. As análises desenvolvidas compreendem, além da avaliação dos resultados individuais de cada estrutura, uma análise paramétrica entre todos os protótipos, investigando entre outros fatores, o tipo de solo, tipo de geossintético e geometria interna das estruturas. Além disso, foi realizada uma abordagem especial sobre a análise em longo prazo do protótipo 7. Dentre as conclusões mais importantes obtidas nesta pesquisa, podem-se citar as grandes deformações de fluência registradas no protótipo 7, a tendência de formação de uma superfície potencial de ruptura linear para os protótipos construídos com solo granular e de espiral logarítmica para os protótipos construídos com solos coesivos, a importância da coesão no bom comportamento das estruturas e a redução das movimentações verticais das estruturas com o acréscimo do teor de areia na granulometria do solo / Despite the important advantages associated with the use of geotextiles as reinforcement, most retaining walls in Brazil still use more conventional. The lack of field monitoring data regarding the internal and face displacements of these structures has certainly prevented broader use of this reinforced soil technology. This study addresses several aspects related to the behavior of geotextile-reinforced soil structures, such as the deformability of reinforcement materials under the confinement of soil, and quantification of the actual failure mechanisms. To achieve these goals, eight 4.0 m high geotextile-reinforced soil retaining wall prototypes were built and instrumented in order to quantify their behavior under ambient atmospheric conditions. Granular and poorly draining backfills were used in this study. Innovative construction methods and instrumentation were developed specifically for this research program. A significant laboratory testing program was conducted to quantify the stress-strain properties of the soils and geosynthetics involved in the construction of the walls. As a reference, the behaviors of these prototype structures were compared with that of a long term analysis of a steep slope in Idaho, USA. This wall is 15.3 m high, with displacement measurements carried out until five years after the end of the construction. A parametric analysis was conducted for the prototypes, in order to investigate the effects of soil type, reinforcement type and internal geometry of the structures. Among the most important conclusions obtained in this research, it is the large creep strains observed in prototype 7, the tendency of a linear potential slip surface observed for the walls constructed with granular backfills, and a log spiral slip surface for the prototypes constructed with cohesive backfills, the importance of the apparent cohesion in the behavior of the structures, and the reduction of the vertical movements of the structures with the increase of the amount of sand in the grain size distribution of the soil
|
15 |
Stability Analysis of Geosynthetic Reinforced MSW Landfill Slopes Considering Effects of Biodegradation and Extreme Wind LoadingUnknown Date (has links)
A numerical investigation was conducted to evaluate the geotechnical safety and slope
stability of Municipal Solid Waste (MSW) landfills, considering the effects of
geosynthetic reinforcements, biodegradation of the waste, and associated changes in
material properties, and extreme wind force simulating hurricane conditions. Three
different landfill slopes, 1:1, 1:2, and 1:3 having the height of 122m and width of 2134m,
were analyzed using Limit Equilibrium Method (SLOPE/W) and Finite Element
Modeling (ANSYS). Techniques developed in this study were used to analyze a case
history involving a geogrid reinforced mixed landfill expansion located in Austria. It was
found that few years after construction of the landfill, there is a significant decrease in the
FS due to biodegradation. Extreme wind loading was also found to cause a substantial
loss in the FS. The geosynthetic reinforcement increased the slope stability and
approximately compensated for the damaging effects of biodegradation and wind
loading. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
|
16 |
Analytical Models For Stress-Strain Response Of Fiber-Reinforced Soil And Municipal Solid WasteChouksey, Sandeep Kumar 07 1900 (has links)
The present thesis proposes model for the analyses of stress-strain response of fiber reinforced soil and municipal solid waste (MSW). The concept of reinforcing soils by introducing tension resisting elements such as fibers is becoming widely accepted. Fiber inclusions are found to improve the post-peak behavior of the soil. Evaluation of the stress-strain response of the fiber-reinforced soil indicates that mobilization of the fiber tension generally requires a strain level higher than that corresponding to the peak strength of unreinforced soil. Further, geotechnical engineering properties of MSW such as compressibility, shear strength and stiffness are of prime importance in design and maintenance of landfills. It is also referred in literature that MSW tends to behave as fiber-reinforced soil due to the presence of various types of wastes in its matrix. However, it is not well understood how the stress-strain and strength characteristics vary with time as the biodegradation of waste continues in the landfill.
Based on the experimental observations, in this thesis, an attempt is made for developing generalized constitutive models based on the critical state soil mechanics frame work for fiber reinforced soils and municipal solid waste. The proposed models consider the fiber effect in fiber reinforced soil and, time dependent mechanical and biodegradation effects in case of municipal solid waste, respectively. The proposed models are able to capture the stress-strain and pore water pressure response in both the cases.
For better understanding, the present thesis is divided into following seven chapters.
Chapter 1 is an introductory chapter, in which the need for use of the constitutive models is presented. Further, the organization of thesis is also presented.
Chapter 2 presents a brief description of the available studies in the literature on fiber-reinforced soils and municipal solid waste. Various studies on fiber-reinforced soil included experimental results (both laboratory and field) and modeling methods. Experiments on fiber-reinforced soils were mainly carried out with triaxial compression tests, unconfined compression tests, direct shear tests, one dimensional consolidation tests, etc. Force equilibrium model, limit equilibrium model, statistical theory, regression based models are some of the models available in the literature for quantifying the strength of the fiber-reinforced soil. Further, various studies with regard to the engineering properties of municipal solid waste and their characteristic properties available in the literature are presented. They include different models proposed by various researchers for the prediction of stress-strain response, time dependent behavior and load settlement analysis of the municipal solid waste. Finally, based on the literature review, the scope and objectives of the thesis are presented at the end.
Chapter 3 describes various types of soils, properties of soils and fibers used in the present study. A detailed description of the sample preparation and methods adopted in the experimental program are presented in this chapter.
Chapter 4 presents the experimental results of triaxial compression tests and one dimensional consolidation test carried out on fiber-reinforced soils. Based on the experimental observations, a constitutive model for fiber-reinforced soil in the frame work of modified cam clay model is proposed. Further, the detailed derivation of proposed model and the discussion on evaluation of the input model parameters from triaxial and consolidation tests are presented. The predictions from the proposed models are validated with the experimental data. From the comparison of the results from the proposed model and experiments, it is evident that the proposed model is able to capture stress-strain behavior of fiber-reinforced soils.
Chapter 5 presents the experimental studies on the behavior of municipal solid waste based on the triaxial compression and consolidation tests. Based on the experimental observations, a constitutive model for municipal solid waste in the frame work of modified cam clay model is proposed which considers the mechanisms such as mechanical creep and biodegradation. It also provides detailed description of the selection of the input parameters required for the proposed model. The experimental results in the form of stress-strain and pore water pressure response are compared with the prediction from the proposed model. In addition, the applicability of the proposed model is illustrated using detailed parametric studies of parameters of the model for various ranges.
Chapter 6 presents a brief study of load settlement response on municipal solid waste using a case example. The constitutive model for municipal solid waste proposed in chapter 5 is used to study the time-settlement response of municipal solid waste and to compare the results with available published models considering different mechanisms. The major conclusions from the study are presented at the end.
Chapter 7 presents a brief summary and conclusions from the various studies reported in the present thesis.
vi
|
17 |
Approche par une méthode d’homogénéisation du comportement des ouvrages en sols renforcés par colonnes ou tranchées / A homogenization approach for assessing the behavior of soil structures reinforced by columns or trenchesGueguin, Maxime 09 July 2014 (has links)
Ce travail s'inscrit dans le contexte des techniques de renforcement des sols, permettant d'améliorer les performances mécaniques de terrains de qualité médiocre. Parmi ces techniques, l'utilisation d'inclusions souples prenant la forme de colonnes ou de tranchées croisées connaît une diffusion croissante. Même si les aspects relatifs à leur procédé de construction sont aujourd'hui bien maîtrisés, les méthodes de dimensionnement de ces ouvrages en sols renforcés restent à améliorer. Dans cette thèse, nous proposons d'utiliser la méthode d'homogénéisation afin d'analyser le comportement global des ouvrages en sols renforcés, dans le cadre de la théorie de l'élasticité (propriétés de rigidité) aussi bien que dans celle du calcul à la rupture (propriétés de résistance). Tenant compte de la périodicité géométrique des différentes configurations de renforcement, nous déterminons le comportement des sols renforcés tout d'abord au niveau local puis à l'échelle de l'ouvrage. Pour évaluer les capacités de résistance des ouvrages en sols renforcés, les approches statique et cinématique du calcul à la rupture sont mises en œuvre analytiquement ou numériquement selon la nature du matériau de renforcement utilisé. Par des formulations numériques innovantes adaptées à cette théorie, nous parvenons notamment à évaluer les domaines de résistance macroscopiques des sols renforcés par colonnes ou tranchées croisées, qui peuvent ensuite être pris en compte dans le comportement à la rupture des ouvrages en sols renforcés. Deux exemples d'application de cette procédure, relatifs au problème de capacité portante d'une semelle de fondation reposant sur un sol renforcé d'une part et à l'analyse de la stabilité d'un remblai d'autre part, sont effectués / This work takes place in the context of soil reinforcement techniques, aimed at improving the mechanical performances of poor quality grounds. Among these techniques, the use of soft inclusions taking the form of columns or cross trenches has known important developments. Even if the aspects relative to their construction process are presently well mastered, the design methods of such reinforced soil structures still remain to be greatly improved. The present work advocates the use of the homogenization method for assessing the global behavior of reinforced soil structures, both in the context of linear elasticity (stiffness properties) and in the framework of yield design (strength properties). Taking into account the geometrical periodicity of the various reinforcement configurations, we thus determine the behavior of the reinforced soils first locally and then at the global scale. To assess the strength capacities of reinforced soil structures, the static and kinematic approaches of the yield design theory are performed analytically or numerically depending on the kind of reinforcing material which is used. Adopting innovative numerical formulations dedicated to this theory, we can notably evaluate the macroscopic strength domains of column as well as cross trench reinforced soils which can then be introduced in the yield design of reinforced soil structures. Two illustrative applications of this procedure are performed relating to the bearing capacity problem of a reinforced soil shallow foundation on the one hand, the stability analysis of an embankment on the other hand
|
Page generated in 0.0466 seconds