• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermoelectric Transport at the Metal-Insulator Transition in Disordered Systems

Villagonzalo, Cristine 13 July 2001 (has links) (PDF)
This dissertation demonstrates the behavior of the electronic transport properties in the presence of a temperature gradient in disordered systems near the metal-insulator transition. In particular, we first determine the d.c. conductivity, the thermopower, the thermal conductivity, the Lorenz number, the figure of merit, and the specific heat of a three-dimensional Anderson model of localization by two phenomenological approaches. Then we also compute the d.c. conductivity, the localization length and the Peltier coefficient in one dimension by a new microscopic approach based on the recursive Green's functions method. A fully analytic study is difficult, if not impossible, due to the problem of treating the intrinsic disorder in the model, as well as, incorporating a temperature gradient in the Hamiltonian. Therefore, we resort to various numerical methods to investigate the problem.
2

Thermoelectric Transport at the Metal-Insulator Transition in Disordered Systems

Villagonzalo, Cristine 12 June 2001 (has links)
This dissertation demonstrates the behavior of the electronic transport properties in the presence of a temperature gradient in disordered systems near the metal-insulator transition. In particular, we first determine the d.c. conductivity, the thermopower, the thermal conductivity, the Lorenz number, the figure of merit, and the specific heat of a three-dimensional Anderson model of localization by two phenomenological approaches. Then we also compute the d.c. conductivity, the localization length and the Peltier coefficient in one dimension by a new microscopic approach based on the recursive Green's functions method. A fully analytic study is difficult, if not impossible, due to the problem of treating the intrinsic disorder in the model, as well as, incorporating a temperature gradient in the Hamiltonian. Therefore, we resort to various numerical methods to investigate the problem.

Page generated in 0.0912 seconds