Spelling suggestions: "subject:"collapsing never"" "subject:"collapsing lever""
1 |
Pathobiology of African relapsing fever Borrelia /Larsson, Christer, January 2007 (has links)
Diss. (sammanfattning) Umeå : Univ., 2007. / Härtill 6 uppsatser.
|
2 |
Antigenic variation in relapsing fever BorreliaBurman, Nils January 1994 (has links)
The spirochete Borrelia hermsii avoids the immune response of its mammalian host through multiphasic antigenic variation. Serotype specificity is determined by Variable major proteins (Vmp), in the outer membrane. Through a non reciprocal recombination between linear plasmids, a formerly silent vmp gene replaces another vmp gene at a telomeric expression locus downstream from a common expression site. B. hermsii before and after the switch from serotype 7 to serotype 21, was examined in detail. The nucleotide sequence of the vmp7 and vmp21 genes and flanking regions was determined. The vmp7 and vmp21 are 77% identical in their coding sequence, and the deduced translation products are 63% identical. No antigenic cross reactivity is observed between Vmp7 and Vmp21. This suggests a folding of the proteins in which the similar regions are buried, and not exposed when it is presented at the bacterial surface. Vmp7 and Vmp21 have consensus sequences of prokaryotic lipoproteins and are processed as such when expressed in E. coli. The 5' regions of silent and expressed vmp7 and vmp21 were compared. Silent and active vmp7 and vmp21 genes shared a block of homologous sequence at their 5' ends. Sequences upstream of silent vmp7 and vmp21 genes lacked a promoter and differed substantially from each other. In this antigenic switch a vmp gene was activated by a recombination event which placed it downstream of a promoter. The vmp gene promoter is preceded by a poly(dT dA) ran and three imperfectlyrepeated elements of 2 kb. Each of the 2 kb repeats contains inverted repeats of approximately 0.2 kb at their termini. There is no evidence of the presence of similar elements elsewhere in the genome of B. hermsii. One or more of these elements may stimulate vmp gene switch or expression. The African relapsing fever species Borrelia crocidurae and the American species B. hermsii display many similarities. In both species the vmp genes are localised to linear plasmids, and the vmp genes are activated on the transcriptional level. The nucleotide sequence of their expression sites, however, are not related. Still, the possibility that the switch is mechanistically similar in B. crocidurae and B. hermsii, cannot be ruled out. The binding of B. crocidurae causes aggregation of erythrocytes around the spirochete. The aggregation is reminiscent of the erythrocyte rosetting seen in malarial infections. The erythrocytes at the B. crocidurae surface may protect them from clearance by the host. Thus, the rosetting may constitute an additional mechanism in B. crocidurae for the evasion of the immune reaction. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1994, härtill 5 uppsatser.</p> / digitalisering@umu
|
3 |
The relapsing fever spirochete, borrelia hermsii, and complement regulatory proteins /Hovis, Kelley M., January 2007 (has links)
Thesis (Ph. D.)--Virginia Commonwealth University, 2007. / Prepared for: Dept. of Microbiology and Immunology. Bibliography: leaves 127-137. Available online via the Internet.
|
4 |
Characterization of Borrelia Turicatae Transmission and Dissemination from the Arthropod VectorBoyle, William K 15 August 2014 (has links)
Relapsing fever Borrelia are transmitted through saliva of argasid ticks. Given the 10 to 60 minute long bloodmeal, we characterized the rapidity of Borrelia turicatae transmission from their vector Ornithodoros turicata. Infection rates were compared in mice when cohorts of ticks fed to repletion on animals in which groups of O. turicata were removed 15 seconds after attachment. Infection was evaluated by examining the blood by dark field microscopy, quantitative PCR, and serological responses generated against B. turicatae. Scanning electron microscopy was also performed on cryofractured tick salivary glands to determine spirochete localization. Dissemination of B. turicatae into murine blood was evaluated by removing the bite site after ticks engorged. Our findings indicate that B. turicatae is localized in the lumen of salivary gland acini of O. turicata and transmission to and dissemination in the mammal occur shortly after tick attachment and do not require a complete bloodmeal.
|
5 |
Immunopathogenesis of relapsing fever borreliosisAndersson, Marie January 2008 (has links)
Relapsing fever (RF) is caused by different species of Borrelia transmitted by soft ticks or by the human body louse. Illness is characterized by reappearing peaks of high concentrations of spirochetes in blood, concordant with fever peaks separated by asymptomatic periods. Neuroborreliosis is one of the most severe manifestations of RF borreliosis. To understand the immune response during early RF, we analyzed immune cells in brain and kidney of mice infected with B. crocidurae during the acute infection. Our results indicate that brain defense is comprised primarily of innate immune cells. Despite the infiltration of innate immune cells, Borrelia was not completely eradicated. A failure of the host brain to clear the bacteria may give the pathogen a niche where it can persist. Using our mouse model, we revealed that Borrelia duttonii could persist in the mouse brain for up to 270 days, without being present in the circulation. The infection was silent with no change in host gene expression, and the spirochetes could re-enter the circulation after immunosuppression. We propose that the brain is used by the pathogen to evade host immunity and serves as a possible natural reservoir for B. duttonii, a spirochete that has rarely been found in any mammalian host other than man. Borrelia-induced complications during pregnancy have been reported, and are especially common in RF. In our established mouse model of gestational RF, we could show that the fetuses suffered from severe pathology and growth retardation, probably as a consequence of placental destruction. We could also show trans-placental transmission of the bacteria leading to neonatal RF. Surprisingly, pregnant dams had a lower bacterial load and less severe disease, showing that pregnancy has a protective effect during RF. We have used the gestational RF model to investigate host factors favoring disease resolution. Because the spleen is the primary organ responsible for trapping and removing blood-borne pathogens, we have compared temporal changes in spleen immune cell populations and cytokine/chemokine induction during the infection. Spleens of pregnant mice had earlier neutrophil infiltration, as well as faster and higher production of pro-inflammatory mediators. This rapid, robust response suggests a more effective host defense. Thus, an enhanced pro-inflammatory response during pregnancy imparts a distinct advantage in controlling the severity of relapsing fever infection.
|
6 |
Borrelia channel-forming proteins : structure and functionBunikis, Ignas January 2010 (has links)
Borrelia is a Gram-negative, corkscrew-shaped bacterium transmitted by infected ticks or lice. Borreliae are subdivided into pathogens of two diseases: Lyme disease, caused mainly by B. burgdorferi, B. afzelii and B. garinii; and relapsing fever caused primarily by B. duttonii, B. hermsii, B. recurrentis or B. crocidurae. Both diseases differ in their manifestations, duration times and dissemination patterns. Antibiotics are the major therapeutics, although unfortunately antibiotic treatment is not always beneficial. To date, drug resistance mechanisms in B. burgdorferi are unknown. Transporters of the resistance-nodulation-division (RND) family appear to be involved in drug resistance, especially in Gram-negative bacteria. They consist of three components: a cytoplasmic membrane export system, a membrane fusion protein (MFP), and an outer membrane factor (OMP). The major antibiotic efflux activity of this type in Escherichia coli is mediated by the tripartite multidrug resistance pump AcrAB-TolC. Based on the sequence homology we conclude that the besA (bb0140), besB (bb0141) and besC (bb0142) genes code for a similar efflux system in B. burgdorferi. We created a deletion mutant of besC. The minimal inhibitory concentration (MIC) values of B. burgdorferi carrying an inactive besC gene were 4- to 8-fold lower than in the wild type strain. Animal experiments showed that the besC mutant was unable to infect mice. Black lipid bilayer experiments were carried out to determine the biophysical properties of purified BesC. This study showed the importance of BesC protein for B. burgdorferi pathogenicity and resistance to antibiotics, although its importance in clinical isolates is not known. Due to its small genome, Borrelia is metabolically and biosynthetically deficient, thereby making it highly dependent on nutrients provided by their hosts. The uptake of nutrients by Borrelia is not yet completely understood. We describe the purification and characterization of a 36-kDa protein that functions as a putative dicarboxylate-specific porin in the outer membrane of Borrelia. The protein was designated as DipA, for dicarboxylate-specific porin A. DipA was biophysically characterized using the black lipid bilayer assay. The permeation of KCl through the channel could be partly blocked by titrating the DipA-mediated membrane conductance with increasing concentrations of different organic dicarboxylic anions. The obtained results imply that DipA does not form a general diffusion pore, but a porin with a binding site specific for dicarboxylates which play important key roles in the deficient metabolic and biosynthetic pathways of Borrelia species. The presence of porin P66 has been shown in both Lyme disease and relapsing fever spirochetes. In our study, purified P66 homologues from Lyme disease species B. burgdorferi, B. afzelii and B. garinii and relapsing fever species B. duttonii, B. recurrentis and B. hermsii were compared and their biophysical properties were further characterized in black lipid bilayer assay. Subsequently, the channel diameter of B. burgdorferi P66 was investigated in more detail. For this study, different nonelectrolytes with known hydrodynamic radii were used. This allowed us to determine the effective diameter of the P66 channel lumen. Furthermore, the blockage of the channel after addition of nonelectrolytes revealed seven subconducting states and indicated a heptameric structure of the P66 channel. These results may give more insight into the functional properties of this important porin.
|
7 |
Malaria and relapsing fever Borrelia : interactions and potential therapyLundqvist, Jenny January 2009 (has links)
Infectious diseases such as malaria and relapsing fever borreliosis (RF), cause severe human mortality and morbidity in developing countries. Malaria, caused by Plasmodium spp. parasites, is estimated by the World Health Organization to cause 1.5-2.7 million deaths annually. RF, caused by Borrelia spirochetes, has the highest prevalence described for any bacterial disease in Africa, with infection outcomes ranging from asymptomatic to fatal. RF borreliosis manifests in humans as a recurring fever and with other symptoms very similar to those of malaria. RF borreliosis has been regarded as a transient infection of the blood. However, B. duttonii exploits the brain as an immunoprivileged site escaping the host immune response while spirochetes in the blood are cleared. To investigate whether residual bacteria are dormant or actively dividing, mice with residual brain infection were administered ceftriaxone, a β-lactam antibiotic interfering with cell wall synthesis. Hence, it only affects actively dividing bacteria. Ceftriaxone eradicated brain RF infection in all treated mice, demonstrating that the bacteria are actively multiplying rather than in a dormant state. The findings support the therapeutic use of ceftriaxone for RF neuroborreliosis since penetration into cerebrospinal fluid is greater for ceftriaxone than for the often recommended doxycycline. The clinical features of malaria and RF are similar and diagnosis is further complicated by the frequently occurring concomitant malaria-RF infections. Therefore, we established a mouse model to study the pathogenesis and immunological response to Plasmodium/Borrelia mixed infection. Interestingly, malaria was suppressed in the co-infected animals whereas spirochete numbers were elevated 21-fold. The immune response in the concomitantly infected mice was polarized towards malaria leaving the spirochetes unharmed. Mice with co-infections also exhibited severe anemia and internal damages, probably attributed to escalating spirochete numbers. A secondary malaria infection reactivated the residual brain RF infection in 60% of the mice. This highlights the importance of co-infections as diagnostic pitfalls as well as the need for novel treatment strategies. Currently there is no commercial malaria vaccine and increasing drug resistance presents an urgent need for new malaria chemotherapeutics. Blood-stage malaria parasites are rapidly growing with high metabolic and biosynthetic activity, making them highly sensitive to limitations in polyamine supply. Disrupting polyamine synthesis in vivo with trans-4-methylcyclohexylamine (4MCHA) eradicated the malaria infection gradually, resulting in protective immunity. This leads the way for further biochemical and pharmacological development of the polyamine inhibitor 4MCHA and similar compounds as antimalarial drugs
|
8 |
Host Cell Attachment by Lyme Disease and Relapsing Fever Spirochetes: A DissertationBenoit, Vivian M. 16 December 2010 (has links)
Host cell attachment by pathogenic bacteria can play very different roles in the course of infection. The pathogenic spirochetes Borrelia hermsii and Borrelia burgdorferi sensu lato which cause relapsing fever and Lyme disease, respectively, are transmitted by the bite of infected ticks. After transmission, these spirochetes can cause systemic infection. Relapsing fever spirochetes remain largely in the bloodstream causing febrile episodes, while Lyme disease will often colonize a variety of tissues, such as the heart, joint and nervous system, resulting in a chronic multisystemic disorder. Borrelia species have the ability to bind to various cell types, a process which plays a crucial role in pathogenesis and may influence spirochetal clearance from the bloodstream. Colonization of multiple tissues and cell types is likely promoted by the ability to bind to components found in target tissues, and many B. burgdorferi adhesins have been shown to promote attachment to a wide variety of cells and extracellular matrix components. Different Lyme disease strains have been shown to preferentially colonize certain tissues, although the basis of this tissue tropism is not well understood. In this study we found that among different Lyme disease strains, allelic variation of the adhesin DbpA contributes to variation in its in vitro binding activities raising the possibility that this variation contributes to tissue tropism in vivo. In studying B. hermsii infection, we found evidence by both histological and fluorescence in situ hybridization (FISH) analysis of tissues that indicated that red blood cells were removed by tissue resident macrophages in infected mice. Spirochetes in the spleen and liver were often visualized associated with RBCs, lending support to the hypothesis that direct interaction of B. hermsii spirochetes with RBCs leads to clearance of bacteria from the bloodstream. Our findings indicate that host cell attachment play a key role in the establishment of Lyme disease infection, and in contrast contributes to the clearance of relapsing fever infection.
|
9 |
Borrelia channel-forming proteins structure and function /Bunikis, Ignas, January 2010 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2010. / Härtill 5 uppsatser.
|
10 |
Elucidating the interaction of Borrelia burgdorferi OspC with phagocytes in the establishment of lyme borreliosisCarrasco, Sebastian Eduardo 20 March 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lyme disease, the most prevalent vector-borne illness in the United States, is a multisystem inflammatory disorder caused by infection with the spirochete Borrelia burgdorferi (Bb). This spirochete is maintained in nature through an enzootic cycle involving ticks and small mammals. The Bb genome encodes a large number of surface lipoproteins, many of which are expressed during mammalian infection. One of these lipoproteins is the major outer surface protein C (OspC) whose production is induced during transmission as spirochetes transition from ticks to mammals. OspC is required for Bb to establish infection in mice and has been proposed to facilitate evasion of innate immunity. However, the exact biological function of OspC remains elusive. Our studies show the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγnull mice that lack B cells, T cells, NK cells, and lytic complement, whereas the wild-type spirochete was fully infectious in these mice. The ospC mutant also could not establish infection in SCID and C3H mice that were transiently neutropenic during the first 48 h post-challenge. However, depletion of F4/80+ phagocytes at the skin-site of inoculation in SCID mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted SCID mice, the ospC mutant was capable to colonize the joints and triggered neutrophilia during dissemination in a similar pattern as wild-type bacteria. We then constructed GFP-expressing Bb strains to evaluate the interaction of the ospC mutant with phagocytes. Using flow cytometry and fluorometric assay for phagocytosis, we found that phagocytosis of GFP-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 cells was significantly higher than parental wild-type Bb strains, suggesting that OspC has an anti-phagocytic property. This enhancement in phagocytosis was not mediated by MARCO and CD36 scavenger receptors and was not associated with changes in mRNA levels of TNFα, IL-1β, and IL-10. Phagocytosis assays with HL60 neutrophil-like cells showed that uptake of Bb strains was independent to OspC. Together, our findings reveal that F4/80+ phagocytes are important for clearance of the ospC mutant, and suggest that OspC promotes spirochetes' evasion of macrophages in the skin of mice during early Lyme borreliosis.
|
Page generated in 0.088 seconds