Spelling suggestions: "subject:"delay network""
1 |
Beamforming techniques for millimeter wave relay networksAbbas, Hatem January 2017 (has links)
The energy and data rate requirements for the next generation cellular networks urge the need for innovative solutions. Inspired by its massive bandwidth, millimeter wave (mmWave) band is thought-out to be one of the key elements to meet the aspirations. However, mmWave links are known to have short coverage distance due to the propagation losses introduced at high frequencies. The proposed solutions to overcome the transmission challenges include using large arrays with improved directivity, adopting smaller cells, and relying on cooperative networks to extend the mmWave link and avoid shadowing areas. This work aims to improve the connectivity of the mmWave link in the outdoor environments. One of the cost effective methods is to increase the array gain by using Analogue Beamforming (ABF). The performance of the ABF system in the presence of phase quantization error has been analytically investigated. The study also includes comparing three different channel sounding techniques, namely: exhaustive search, side-to-side search, and n-tier search. The time overhead related to each method and their energy consumption are calculated. The numerical results assist in determining the optimum search period to obtain a reasonable spectral efficiency using minimal power consumption. The results also help identify the minimum number of quantization bits required to produce about ninety percent of the optimistic results. In order to extend the coverage further, relay networks are considered an essential component in mmWave communications. The performance of a single hybrid beamforming full-duplex relay system and multi-relay networks were investigated. The design algorithms for the processors in the network are proposed based on the greedy pursuit approach. The performance of the proposed algorithms is analysed under various scenarios. The analysis highlights the influence of the array size, the number of RF chains, and the length of the channel sounding period. The performance of the proposed systems is compared from both the spectral efficiency and power consumption prospects. The results also establish that the number of antennas at the source and the relay receiver arrays have a superior impact on the system performance than the sizes of the array at the destination and the relay transmitter.
|
2 |
Optimal power minimization in two-way relay network with imperfect channel state informationAl Humaidi, Fadhel 01 August 2010 (has links)
We study a two-way amplify and forward relay network with two transceivers which
communicate through a network of nr relays while there is no direct link between the two
transceivers. Each relay is equipped with a single antenna for transmitting and receiving.
We study the minimization of the total transmit power that is used in all of the network
nodes given the condition that the transceiver which calculates the optimal transmitting
power has a full knowledge about the channels between itself and the relays and the
variance with zero mean of the channels between the relays and the other transceiver.
The total average power is minimized subject to a soft constraint which guarantees that
the outage probability is below a certain level. The optimal solution is derived in closed
form and leads to a single relay selection criterion. / UOIT
|
3 |
Resource allocation and optimization techniques in wireless relay networksHu, Juncheng January 2013 (has links)
Relay techniques have the potential to enhance capacity and coverage of a wireless network. Due to rapidly increasing number of smart phone subscribers and high demand for data intensive multimedia applications, the useful radio spectrum is becoming a scarce resource. For this reason, two way relay network and cognitive radio technologies are required for better utilization of radio spectrum. Compared to the conventional one way relay network, both the uplink and the downlink can be served simultaneously using a two way relay network. Hence the effective bandwidth efficiency is considered to be one time slot per transmission. Cognitive networks are wireless networks that consist of different types of users, a primary user (PU, the primary license holder of a spectrum band) and secondary users (SU, cognitive radios that opportunistically access the PU spectrum). The secondary users can access the spectrum of the licensed user provided they do not harmfully affect to the primary user. In this thesis, various resource allocation and optimization techniques have been investigated for wireless relay and cognitive radio networks.
|
4 |
Scheduling Strategies for Relay of Mars Rover Data via Mars Orbiter and Earth StationsJördening, Jendrik January 2016 (has links)
In this thesis, the relay communication between landed assets on the surface of Mars via a relay orbiter to Earth is studied for its latencies and the times which can be provided for the landed asset to work and for the ground to plan depending on the operational margins, the available ground station network and the available relay orbiters. In this context, an automated solver is developed to evaluate a locally optimal strategy of relay pass assignment respecting the different constraints and is proven to provide a solution close to the globally optimal one. The solver is determining the link opportunities and reasons on them, by minimising a cost function for each relay pass and choosing the cheapest ones in an iterative process. With this solver, it is shown that the best operational approach is to await commands confirmation and to provide the possibility of resending corrupted files. Moreover, it is shown that a 24/7 ground station coverage should be ideally provided, on which priority for booking should be given to relay missions since they depend on the actual timing of the orbiter overflights over the lander. Further- more, it is shown that adding additional relay orbiters increases the solution space drastically, making it desirable to use them. The possibility to restrict cross-agency support is assessed, showing that cross-support is still eligible. Finally, the data volume is shown to be sufficient to fulfil the ExoMars Rover and Surface Platform mission requirements, when using multiple orbiters, even though the solver itself would need extra capabilities to cope with allocating appropriate relay passes.
|
5 |
Relay Network Design in Logistics and Telecommunications: Models and Solution ApproachesKewcharoenwong, Panitan 2010 May 1900 (has links)
Strategic network design has significant impacts on the operational performance
of transportation and telecommunications industries. The corresponding networks
are typically characterized by a multicommodity
ow structure where a commodity
is defined by a unique origin-destination pair and an associated amount of
ow. In
turn, multicommodity network design and hub location models are commonly employed
when designing strategic networks in transportation and telecommunications
applications.
In this dissertation, these two modeling approaches are integrated and generalized
to address important requirements in network design for truckload transportation and
long-distance telecommunications networks. To this end, we first introduce a cost effective relay network design model and then extend this base model to address the
specific characteristics of these applications. The base model determines relay point
(RP) locations where the commodities are relayed from their origins to destinations.
In doing this, we explicitly consider distance constraints for the RP-RP and nonRPRP
linkages.
In truckload transportation, a relay network (RP-network) can be utilized to
decrease drivers' driving distances and keep them within their domiciles. This can potentially help alleviate the high driver turnover problem. In this case, the percentage
circuitry, load-imbalance, and link-imbalance constraints are incorporated into
the base model to control related performance metrics that are affected by the distance
constraints. When compared to the networks from other modeling approaches,
the RP-network is more effective in controlling drivers' tour lengths and capable of
controlling the empty mileage to low levels without adding a large amount of additional
travel distance. In telecommunications, an RP-network can be beneficial in
long-distance data transfers where the signals' delity must be improved/regenerated
at RPs along their travel paths. For this setting, we extend the base model to include
fixed link setup costs and capacities. From our computational results, our models
provide better network configuration that is cost effective and facilitates a better
service quality (shorter delays and better connectivity).
Concerning methodology, we develop effcient exact solution algorithms based
on Benders decomposition, Lagrangean decomposition, and Lagrangean relaxation.
The performance of the typical solution frameworks are enhanced via numerous accelerating
techniques to allow the solution of large-sized instances in reduced solution
times. The accelerating techniques and solution approaches are transferable to other
network design problem settings with similar characteristics.
|
6 |
Distributed Beamforming in Wireless Relay NetworksFazeli Dehkordy, Siavash 18 September 2008 (has links)
In this thesis, we consider a wireless network consisting of d source-destination pairs
and R relaying nodes. Each source wishes to communicate to its corresponding destination.
By exploiting the spatial multiplexing capability of the wireless medium, we
develop two cooperative beamforming schemes in order to establish wireless connections
between multiple source-destination pairs through a collaborative relay network.
Our first communication scheme consists of two steps. In the first step, all sources
transmit their signals simultaneously to the relay network. As a result, each relay receives
a noisy faded mixture of all source signals. In the second step, each relay transmits
an amplitude- and phase-adjusted version of its received signal, i.e., the relay
received signals are multiplied by a set of complex coefficients and are retransmitted.
Our goal is to obtain these complex coefficients (beamforming weights) through minimization
of the total relay transmit power while the signal-to-interference-plus-noise
ratio at the destinations are guaranteed to be above certain pre-defined thresholds.
Our second scheme is a distributed downlink beamforming technique which is
performed in d + 1 successive time slots. In the first d time slots, the d sources
transmit their data to the relay network successively. The relay nodes receive and
store the noisy faded versions of the source signals. In the (d + 1)th time slot, the
relays aim to collectively provide downlink connections to all d destinations. To do so, each relay transmits a linear combination of the stored signals received during the
first d time slots. Again, our goal is to determine the complex weights (used at the
relaying nodes to linearly combine the source signals) by minimizing the total relay
transmit power while satisfying certain quality of services at the destinations.
We use semi-definite relaxation to turn both problems into semi-definite programming
(SDP) problems. Therefore, they can be efficiently solved using interior point
methods. We showed that our proposed schemes significantly outperform orthogonal
multiplexing schemes, such as time-division multiple access schemes, in a large range
of network data rates. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2008-09-17 13:07:21.505
|
7 |
A Bidirectional Two-Hop Relay Network Using GNU Radio and USRPLe, Johnny 08 1900 (has links)
A bidirectional two-hop relay network with decode-and-forward strategy is implemented using GNU Radio (software) and several USRPs (hardware) on Ubuntu (operating system). The relay communication system is comprised of three nodes; Base Station A, Base Station B, and Relay Station (the intermediate node). During the first time slot, Base Station A and Base Station B will each transmit data, e.g., a JPEG file, to Relay Station using DBPSK modulation and FDMA. For the final time slot, Relay Station will perform a bitwise XOR of the data, and transmit the XORed data to Base Station A and Base Station B, where the received data is decoded by performing another XOR operation with the original data.
|
8 |
Diversity Multiplexing Tradeoff and Capacity Results in Relayed Wireless NetworksOveis Gharan, Shahab January 2010 (has links)
This dissertation studies the diversity multiplexing tradeoff and the capacity of wireless multiple-relay network.
In part 1, we study the setup of the parallel Multi-Input Multi-Output (MIMO)
relay network. An amplify-and-forward relaying scheme, Incremental Cooperative
Beamforming, is introduced and shown to achieve the capacity of the network in
the asymptotic case of either the number of relays or the power of each relay goes to infinity.
In part 2, we study the general setup of multi-antenna multi-hop multiple- relay network. We propose a new scheme, which we call random sequential (RS), based on the amplify-and-forward relaying. Furthermore, we derive diversity- multiplexing tradeoff (DMT) of the proposed RS scheme for general single-antenna multiple-relay networks. It is shown that for single-antenna two-hop multiple- access multiple-relay (K > 1) networks (without direct link between the source(s) and the destination), the proposed RS scheme achieves the optimum DMT.
In part 3, we characterize the maximum achievable diversity gain of the multi- antenna multi-hop relay network and we show that the proposed RS scheme achieves the maximum diversity gain.
In part 4, RS scheme is utilized to investigate DMT of the general multi-antenna multiple-relay networks. First, we study the case of a multi-antenna full-duplex single-relay two-hop network, for which we show that the RS achieves the optimum DMT. Applying this result, we derive a new achievable DMT for the case of multi-antenna half-duplex parallel relay network. Interestingly, it turns out that the DMT of the RS scheme is optimum for the case of multi-antenna two parallel non-interfering half-duplex relays. Furthermore, we show that random unitary matrix multiplication also improves the DMT of the Non-Orthogonal AF relaying scheme in the case of a multi-antenna single relay channel. Finally, we study the general case of multi-antenna full-duplex relay networks and derive a new lower-bound on its DMT using the RS scheme.
Finally, in part 5, we study the multiplexing gain of the general multi-antenna multiple-relay networks. We prove that the traditional amplify-forward relaying achieves the maximum multiplexing gain of the network. Furthermore, we show that the maximum multiplexing gain of the network is equal to the minimum vertex cut-set of the underlying graph of the network, which can be computed in polynomial time in terms of the number of network nodes. Finally, the argument is extended to the multicast and multi-access scenarios.
|
9 |
Diversity Multiplexing Tradeoff and Capacity Results in Relayed Wireless NetworksOveis Gharan, Shahab January 2010 (has links)
This dissertation studies the diversity multiplexing tradeoff and the capacity of wireless multiple-relay network.
In part 1, we study the setup of the parallel Multi-Input Multi-Output (MIMO)
relay network. An amplify-and-forward relaying scheme, Incremental Cooperative
Beamforming, is introduced and shown to achieve the capacity of the network in
the asymptotic case of either the number of relays or the power of each relay goes to infinity.
In part 2, we study the general setup of multi-antenna multi-hop multiple- relay network. We propose a new scheme, which we call random sequential (RS), based on the amplify-and-forward relaying. Furthermore, we derive diversity- multiplexing tradeoff (DMT) of the proposed RS scheme for general single-antenna multiple-relay networks. It is shown that for single-antenna two-hop multiple- access multiple-relay (K > 1) networks (without direct link between the source(s) and the destination), the proposed RS scheme achieves the optimum DMT.
In part 3, we characterize the maximum achievable diversity gain of the multi- antenna multi-hop relay network and we show that the proposed RS scheme achieves the maximum diversity gain.
In part 4, RS scheme is utilized to investigate DMT of the general multi-antenna multiple-relay networks. First, we study the case of a multi-antenna full-duplex single-relay two-hop network, for which we show that the RS achieves the optimum DMT. Applying this result, we derive a new achievable DMT for the case of multi-antenna half-duplex parallel relay network. Interestingly, it turns out that the DMT of the RS scheme is optimum for the case of multi-antenna two parallel non-interfering half-duplex relays. Furthermore, we show that random unitary matrix multiplication also improves the DMT of the Non-Orthogonal AF relaying scheme in the case of a multi-antenna single relay channel. Finally, we study the general case of multi-antenna full-duplex relay networks and derive a new lower-bound on its DMT using the RS scheme.
Finally, in part 5, we study the multiplexing gain of the general multi-antenna multiple-relay networks. We prove that the traditional amplify-forward relaying achieves the maximum multiplexing gain of the network. Furthermore, we show that the maximum multiplexing gain of the network is equal to the minimum vertex cut-set of the underlying graph of the network, which can be computed in polynomial time in terms of the number of network nodes. Finally, the argument is extended to the multicast and multi-access scenarios.
|
10 |
Robust Beamforming for OFDM Modulated Two-Way MIMO Relay NetworkZhou, Jianwei 2012 May 1900 (has links)
This thesis studies a two-way relay network (TWRN), which consists of two single antenna source nodes and a multi-antenna relay node. The source nodes exchange information via the assistance of the relay node in the middle. The relay scheme in this TWRN is amplify-and-forward (AF) based analog network coding (ANC). A robust beamforming matrix optimization algorithm is presented here with the objective to minimize the transmit power at the relay node under given signal to interference and noise ratio (SINR) requirements of source nodes. This problem is first formulated as a non-convex optimization problem, and it is next relaxed to a semi-definite programming (SDP) problem by utilizing the S-procedure and rank-one relaxation. This robust beamforming optimization algorithm is further validated in a MATLAB-based orthogonal frequency-division multiplexing (OFDM) MIMO two-way relay simulation system. To better investigate the performance of this beamforming algorithm in practical systems, synchronization issues such as standard timing offset (STO) and carrier frequency offset (CFO) are considered in simulation. The transmission channel is modeled as a frequency selective fading channel, and the source nodes utilize training symbols to perform minimum mean-square error (MMSE) channel estimation. BER curves under perfect and imperfect synchronization are presented to show the performance of TWRN with ANC. It is shown that the outage probability of robust beamforming algorithm is tightly related to the SINR requirements at the source nodes, and the outage probability increases significantly when the SINR requirements are high.
|
Page generated in 0.2602 seconds