• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TELEMETRY IN BUNDLES: DELAY-TOLERANT NETWORKING FOR DELAY-CHALLENGED APPLICATIONS

Burleigh, Scott 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Delay-tolerant networking (DTN) is a system for constructing automated data networks in which end-to-end communication is reliable despite low data rates, possible sustained interruptions in connectivity, and potentially high signal propagation latency. As such it promises to provide an inexpensive and robust medium for returning telemetry from research vehicles in environments that provide meager support for communications: deep space, the surface of Mars, the poles or the sub- Arctic steppes of Earth, and others. This paper presents an overview of DTN concepts, including “bundles” and the Bundling overlay protocol. One possible scenario for the application of DTN to a telemetry return problem is described, and there is a brief discussion of the current state of DTN technology development.
2

Reliable RFID Communication and Positioning System for Industrial IoT

Zhai, Chuanying January 2016 (has links)
The Internet of Things (IoT) has the vision to interconnect everything of the physical world and the virtual world. Advanced automated and adaptive connectivity of objects, systems, and services is expected to be achieved under the IoT context, especially in the industrial environment. Industry 4.0 with the goal of intelligent and self-adaptable manufacturing is driven by the IoT. The Object Layer, where real-time and reliable information acquisition from the physical objects carried out, is the basic enabler in the 3-layer industrial IoT system. Such acquisition system features deterministic access, reliable communication with failure resistance mechanism, latency-aware real-time response, deployable structure/protocol, and adaptive performance on various QoS demands. This thesis proposes a reliable RFID communication system for acquisition in the industrial environment. A discrete gateway structure and a contention-free communication protocol are designed to fulfill the unique system requirements. Such gateway structure offers a flexible configuration of readers and RF technologies. It enables a full duplex communication between the objects and the gateway. The designed MF-TDMA protocol can enhance the failure resistance and emergency report mechanism thanks to the separation of control link and data link in the gateway. Specifically, an optional ARQ mechanism, an independent/uniform synchronization and control method, and a slot allocation optimization algorithm are designed besides time-division and frequency-division multiplexing. Protocol implementations for different industrial situations illustrate the system ability for supporting the demands of various QoS. Finally, a 2.4-GHz/UWB hybrid positioning platform is explored based on the introduced RFID system. Taking advantage of the UWB technology, the positioning platform can achieve positioning accuracy from meter level to centimeter level. Hybrid tag prototype and specific communication process based on the MF-TDMA protocol are designed. An SDR UWB reader network, capable of evaluating multiple algorithms, is built to realize accurate positioning with an improved algorithm proposed. / <p>QC 20161109</p>
3

Varför yttrandefrihet? : Om rättfärdigandet av yttrandefrihet med utgångspunkt från fem centrala argument i den demokratiska idétraditionen

Petäjä, Ulf January 2006 (has links)
This thesis focuses primarily on the question ”why is freedom of speech valuable in a democratic context?” I argue that it is problematic that free-dom of speech takes for granted and that the main question therefore is absent in current political science research, in legal texts, and in public discourse. I also argue that in democratic states the focus, regarding freedom of speech, is often on its boundaries and limits rather than on its justification. But it is highly problematic to find and establish its limits without dis-cussion why freedom of speech is desirable in the first place. The thesis poses two questions. The first concerns how freedom of speech is justified by the five strongest available arguments. I analyze the arguments and conclude that they justify freedom of speech differently but that they are similar in one aspect. Freedom of speech is not primarily justified as an individual right. It is rather justified in terms of the public good. The second question asks if we can reach a better understanding of the central arguments. I argue that the arguments have something in common; all of them justify freedom of speech with reference to a common value. I argue that this common value is what I call, a “reliable communication process”. All five arguments claim that freedom of speech is valuable because it promotes a reliable communication process. This process is reliable in terms of its capacity to create a pluralistic public discourse that exposes citizens to ideas and perspectives that they would not have chosen in advance. This study results in the following findings. First, that freedom of speech is valuable in a democratic context because the reliable communication process supports the central democratic value of the enlightened understanding of the democratic citizen. Secondly, that I can give a principled reason for the boundaries of freedom of speech. This means that, according to the arguments, there are reasons to abolish or limit freedom of speech if the reliable communication process is damaged or absent, for example in case of war, anarchy, or violent circumstances. Third, that there are strong reasons in support of a public service media, and greater state intervention in media politics. One strong reason for that conclusion is that a public service media can ensure a pluralistic communication in society and counteract information conformity and intolerance among the members of society.
4

Design and Evaluation of a Reliable Group Communication Protocol / Design och utvärdering av ett protokoll för tillförlitlig gruppkommunikation

Albin, Odervall, Philip, Montalvo January 2016 (has links)
In distributed systems it is often useful to ensure that messages sent between processes in a group are received by all group members. This thesis presents Reliable Non-Ordered Multicast Protocol (RNOMP). We argue that it achieves reliable multicast between processes in groups that processes can leave and join arbitrarily. The protocol has been implemented on top of a group membership simulation which allows evaluation of the performance of the protocol while varying packet loss and the frequency at which processes leaves and joins groups. After analyzing how the protocol handles certain situations we conclude that our protocol achieves reliability and performs well within certain parameter values.
5

Wireless Network Dimensioning and Provisioning for Ultra-reliable Communication: Modeling and Analysis

Gomes Santos Goncalves, Andre Vinicius 28 November 2023 (has links)
A key distinction between today's and tomorrow's wireless networks is the appetite for reliability to enable emerging mission-critical services such as ultra-reliable low-latency communication (URLLC) and hyper-reliable low-latency communication (HRLLC), the staple mission-critical services in IMT-2020 (5G) and IMT-2023 (6G), for which reliable and resilient communication is a must. However, achieving ultra-reliable communication is challenging because of these services' stringent reliability and latency requirements and the stochastic nature of wireless networks. A natural way of increasing reliability and reducing latency is to provision additional network resources to compensate for uncertainty in wireless networks caused by fading, interference, mobility, and time-varying network load, among others. Thus, an important step to enable mission-critical services is to identify and quantify what it takes to support ultra-reliable communication in mobile networks -- a process often referred to as dimensioning. This dissertation focuses on resource dimensioning, notably spectrum, for ultra-reliable wireless communication. This dissertation proposes a set of methods for spectrum dimensioning based on concepts from risk analysis, extreme value theory, and meta distributions. These methods reveal that each ``nine'' in reliability (e.g., five-nines in 99.999%) roughly translates into an order of magnitude increase in the required bandwidth. In ultra-reliability regimes, the required bandwidth can be in the order of tens of gigahertz, far beyond what is typically available in today's networks, making it challenging to provision resources for ultra-reliable communication. Accordingly, this dissertation also investigates alternative approaches to provide resources to enable ultra-reliable communication services in mobile networks. Particularly, this dissertation considers multi-operator network sharing and multi-connectivity as alternatives to make additional network resources available to enhance network reliability and proposes multi-operator connectivity sharing, which combines multi-operator network sharing with multi-connectivity. Our studies, based on simulations, real-world data analysis, and mathematical models, suggest that multi-operator connectivity sharing -- in which mobiles multi-connect to base stations of operators in a sharing arrangement -- can reduce the required bandwidth significantly because underlying operators tend to exhibit characteristics attractive to reliability, such as complementary coverage during periods of impaired connectivity, facilitating the support for ultra-reliable communication in future mobile networks. / Doctor of Philosophy / A key distinction between today's and tomorrow's wireless networks is the appetite for reliability to enable emerging mission-critical services in 5G and 6G, for which ultra-reliable communication is a must. However, achieving ultra-reliable communication is challenging because of these services' stringent reliability and latency requirements and the stochastic nature of wireless networks. Reliability often comes at the cost of additional network resources to compensate for uncertainty in wireless networks. Thus, an important step to enable ultra-reliable communication is to identify and quantify what it takes to support mission-critical services in mobile networks -- a process often denoted as dimensioning. This dissertation focuses on spectrum dimensioning and proposes a set of methods to identify suitable spectrum bands and required bandwidth for ultra-reliable communication. These methods reveal that the spectrum needs for ultra-reliable communication can be beyond what is typically available in today's networks, making it challenging to provide adequate resources to support ultra-reliable communication services in mobile networks. Alternatively, we propose multi-operator connectivity sharing: mobiles simultaneously connect to multiple base stations of different operators. Our studies suggest that multi-operator connectivity sharing can reduce the spectrum needs in ultra-reliability regimes significantly, being an attractive alternative to enable ultra-reliable communication in future mobile networks.
6

On Age-of-Information Aware Resource Allocation for Industrial Control-Communication-Codesign

Scheuvens, Lucas 23 January 2023 (has links)
Unter dem Überbegriff Industrie 4.0 wird in der industriellen Fertigung die zunehmende Digitalisierung und Vernetzung von industriellen Maschinen und Prozessen zusammengefasst. Die drahtlose, hoch-zuverlässige, niedrig-latente Kommunikation (engl. ultra-reliable low-latency communication, URLLC) – als Bestandteil von 5G gewährleistet höchste Dienstgüten, die mit industriellen drahtgebundenen Technologien vergleichbar sind und wird deshalb als Wegbereiter von Industrie 4.0 gesehen. Entgegen diesem Trend haben eine Reihe von Arbeiten im Forschungsbereich der vernetzten Regelungssysteme (engl. networked control systems, NCS) gezeigt, dass die hohen Dienstgüten von URLLC nicht notwendigerweise erforderlich sind, um eine hohe Regelgüte zu erzielen. Das Co-Design von Kommunikation und Regelung ermöglicht eine gemeinsame Optimierung von Regelgüte und Netzwerkparametern durch die Aufweichung der Grenze zwischen Netzwerk- und Applikationsschicht. Durch diese Verschränkung wird jedoch eine fundamentale (gemeinsame) Neuentwicklung von Regelungssystemen und Kommunikationsnetzen nötig, was ein Hindernis für die Verbreitung dieses Ansatzes darstellt. Stattdessen bedient sich diese Dissertation einem Co-Design-Ansatz, der beide Domänen weiterhin eindeutig voneinander abgrenzt, aber das Informationsalter (engl. age of information, AoI) als bedeutenden Schnittstellenparameter ausnutzt. Diese Dissertation trägt dazu bei, die Echtzeitanwendungszuverlässigkeit als Folge der Überschreitung eines vorgegebenen Informationsalterschwellenwerts zu quantifizieren und fokussiert sich dabei auf den Paketverlust als Ursache. Anhand der Beispielanwendung eines fahrerlosen Transportsystems wird gezeigt, dass die zeitlich negative Korrelation von Paketfehlern, die in heutigen Systemen keine Rolle spielt, für Echtzeitanwendungen äußerst vorteilhaft ist. Mit der Annahme von schnellem Schwund als dominanter Fehlerursache auf der Luftschnittstelle werden durch zeitdiskrete Markovmodelle, die für die zwei Netzwerkarchitekturen Single-Hop und Dual-Hop präsentiert werden, Kommunikationsfehlerfolgen auf einen Applikationsfehler abgebildet. Diese Modellierung ermöglicht die analytische Ableitung von anwendungsbezogenen Zuverlässigkeitsmetriken wie die durschnittliche Dauer bis zu einem Fehler (engl. mean time to failure). Für Single-Hop-Netze wird das neuartige Ressourcenallokationsschema State-Aware Resource Allocation (SARA) entwickelt, das auf dem Informationsalter beruht und die Anwendungszuverlässigkeit im Vergleich zu statischer Multi-Konnektivität um Größenordnungen erhöht, während der Ressourcenverbrauch im Bereich von konventioneller Einzelkonnektivität bleibt. Diese Zuverlässigkeit kann auch innerhalb eines Systems von Regelanwendungen, in welchem mehrere Agenten um eine begrenzte Anzahl Ressourcen konkurrieren, statistisch garantiert werden, wenn die Anzahl der verfügbaren Ressourcen pro Agent um ca. 10 % erhöht werden. Für das Dual-Hop Szenario wird darüberhinaus ein Optimierungsverfahren vorgestellt, das eine benutzerdefinierte Kostenfunktion minimiert, die niedrige Anwendungszuverlässigkeit, hohes Informationsalter und hohen durchschnittlichen Ressourcenverbrauch bestraft und so das benutzerdefinierte optimale SARA-Schema ableitet. Diese Optimierung kann offline durchgeführt und als Look-Up-Table in der unteren Medienzugriffsschicht zukünftiger industrieller Drahtlosnetze implementiert werden.:1. Introduction 1 1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Related Work 7 2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11 2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Deriving Proper Communications Requirements 17 3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18 3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21 3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22 3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23 3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23 3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25 3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31 3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33 3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34 3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34 3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Modeling Control-Communication Failures 43 4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44 4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46 4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57 4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. Single Hop – Single Agent 61 5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61 5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6. Single Hop – Multiple Agents 71 6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74 6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1. Verification through System-Level Simulation . . . . . . . . . 78 6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79 6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80 6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82 6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84 6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86 6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. Dual Hop – Single Agent 91 7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91 7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98 7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8. Conclusions and Outlook 105 8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A. DC Motor Model 111 Bibliography 113 Publications of the Author 127 List of Figures 129 List of Tables 131 List of Operators and Constants 133 List of Symbols 135 List of Acronyms 137 Curriculum Vitae 139 / In industrial manufacturing, Industry 4.0 refers to the ongoing convergence of the real and virtual worlds, enabled through intelligently interconnecting industrial machines and processes through information and communications technology. Ultrareliable low-latency communication (URLLC) is widely regarded as the enabling technology for Industry 4.0 due to its ability to fulfill highest quality-of-service (QoS) comparable to those of industrial wireline connections. In contrast to this trend, a range of works in the research domain of networked control systems have shown that URLLC’s supreme QoS is not necessarily required to achieve high quality-ofcontrol; the co-design of control and communication enables to jointly optimize and balance both quality-of-control parameters and network parameters through blurring the boundary between application and network layer. However, through the tight interlacing, this approach requires a fundamental (joint) redesign of both control systems and communication networks and may therefore not lead to short-term widespread adoption. Therefore, this thesis instead embraces a novel co-design approach which keeps both domains distinct but leverages the combination of control and communications by yet exploiting the age of information (AoI) as a valuable interface metric. This thesis contributes to quantifying application dependability as a consequence of exceeding a given peak AoI with the particular focus on packet losses. The beneficial influence of negative temporal packet loss correlation on control performance is demonstrated by means of the automated guided vehicle use case. Assuming small-scale fading as the dominant cause of communication failure, a series of communication failures are mapped to an application failure through discrete-time Markov models for single-hop (e.g, only uplink or downlink) and dual-hop (e.g., subsequent uplink and downlink) architectures. This enables the derivation of application-related dependability metrics such as the mean time to failure in closed form. For single-hop networks, an AoI-aware resource allocation strategy termed state-aware resource allocation (SARA) is proposed that increases the application reliability by orders of magnitude compared to static multi-connectivity while keeping the resource consumption in the range of best-effort single-connectivity. This dependability can also be statistically guaranteed on a system level – where multiple agents compete for a limited number of resources – if the provided amount of resources per agent is increased by approximately 10 %. For the dual-hop scenario, an AoI-aware resource allocation optimization is developed that minimizes a user-defined penalty function that punishes low application reliability, high AoI, and high average resource consumption. This optimization may be carried out offline and each resulting optimal SARA scheme may be implemented as a look-up table in the lower medium access control layer of future wireless industrial networks.:1. Introduction 1 1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Related Work 7 2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11 2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Deriving Proper Communications Requirements 17 3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18 3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21 3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22 3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23 3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23 3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25 3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31 3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33 3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34 3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34 3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Modeling Control-Communication Failures 43 4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44 4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46 4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57 4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. Single Hop – Single Agent 61 5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61 5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6. Single Hop – Multiple Agents 71 6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74 6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1. Verification through System-Level Simulation . . . . . . . . . 78 6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79 6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80 6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82 6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84 6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86 6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. Dual Hop – Single Agent 91 7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91 7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98 7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8. Conclusions and Outlook 105 8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A. DC Motor Model 111 Bibliography 113 Publications of the Author 127 List of Figures 129 List of Tables 131 List of Operators and Constants 133 List of Symbols 135 List of Acronyms 137 Curriculum Vitae 139
7

Real-Time and Reliable Communication in Wireless Sensor and Actor Networks

Gungor, Vehbi Cagri 08 1900 (has links)
Wireless Sensor and Actor Networks (WSANs) are composed of heterogeneous nodes referred to as sensors and actors. Sensors are low-cost, low-power, multi-functional devices that communicate untethered in short distances. Actors collect and process sensor data and perform appropriate actions on the environment. Hence, actors are resource-rich devices equipped with higher processing and transmission capabilities, and longer battery life. In WSANs, the collaborative operation of the sensors enables the distributed sensing of a physical phenomenon. After sensors detect an event in the deployment field, the event data is distributively processed and transmitted to the actors, which gather, process, and eventually reconstruct the event data. WSANs can be considered a distributed control system designed to react to sensor information with an effective and timely action. For this reason, in WSANs it is important to provide real-time coordination and communication to guarantee timely execution of the right actions. The energy efficiency of the networking protocols is also a major concern, since sensors are resource-constrained devices. Hence, the unique characteristics and challenges coupled with the limitations of wireless environments call for novel networking protocols for WSANs. The objective of this research is to develop new communication protocols to support real-time and reliable event data delivery with minimum energy consumption in WSANs. The proposed solutions dynamically adjust their protocol configurations to adapt to the heterogeneous characteristics of WSANs. Specifically, the interactions between contention resolution and congestion control mechanisms as well as the physical layer effects in WSANs are investigated. Next, a real-time and reliable transport protocol is proposed to achieve reliable and timely event detection with congestion avoidance in WSANs. In addition, a resource-aware and link-quality-based routing protocol is presented to address energy limitations and link quality variations in WSANs. Finally, the electric utility automation applications of WSANs are presented and the propagation characteristics of wireless channel in different utility environments are investigated.
8

Comunicação Segura e Confiável para Sistemas Multiagentes Adaptando Especificações XML / Safe and Trustworthy communication for Multi-agent Systems evolving Specifications XML

OLIVEIRA, Emerson José Santos 01 December 2006 (has links)
Made available in DSpace on 2016-08-17T14:53:16Z (GMT). No. of bitstreams: 1 Emerson Jose.pdf: 1038765 bytes, checksum: 6f58f00ccbf51733d7f976591c66c028 (MD5) Previous issue date: 2006-12-01 / Multi-agent systems are evolving to enterprise applications and they are more used in open environments, such as the Internet. Many issues should be considered with this evolution, like security and reliability of communication. In this work, we propose a solution for secure communication and a solution for a reliable communication; both solutions are for multi-agent systems. These solutions adapt XML technologies and consist of several XML Specifications and RDF standard. For secure communication, we adapt the XML-DSig specification to provide integrity and digital signature; the XMLEnc specification is used to provide confidentiality through encryption, and the XKMS specification is used to provide PKI support. For reliable communication, we adapt the WS-RM specification that guarantees the message delivery. The RDF standard enables agents for exchanging messages using XML syntax. In this work, the tests with prototypes of the proposed solutions and comparisons with other solutions are also presented. / Sistemas multiagentes estão evoluindo em aplicações corporativas e estão sendo utilizados cada vez mais em ambientes abertos, como a Internet. Vários tópicos devem ser observados nesta evolução, como a segurança e a confiança na entrega das mensagens. Neste trabalho, nós propomos um modelo de comunicação segura e um modelo de entrega de mensagens confiável. Os dois modelos têm tecnologias XML adaptadas, que consistem em várias especificações XML (Extensible Markup Language) e no padrão RDF (Resource Description Framework). Para a segurança, várias especificações foram adaptadas: a especificação XML Signature, que fornece integridade através de assinatura digital; a XML Encryption, que fornece confidenciabilidade através de criptografia; e a XKMS (XML Key management Specification) que fornece suporte ao esquema PKI (Public Key Infrastructure). Para a parte de confiabilidade de comunicação, a especificação WS-RM (WS-ReliableMessaging) foi adaptada para garantir a entrega das mensagens. O padrão RDF foi utilizado para habilitar os agentes a trocarem mensagens usando a sintaxe XML. Neste trabalho, os testes com os protótipos das soluções propostas e as comparações com algumas soluções existentes também são apresentados.

Page generated in 0.1565 seconds