1 |
A Machine Learning Method to Improve Non-Contact Heart Rate Monitoring Using RGB CameraGhanadian, Hamideh 12 December 2018 (has links)
Recording and monitoring vital signs is an essential aspect of home-based healthcare. Using contact sensors to record physiological signals can cause discomfort to patients, especially after prolonged use. Hence, remote physiological measurement approaches have attracted considerable attention as they do not require physical contact with the patient’s skin. Several studies proposed techniques to measure Heart Rate (HR) and Heart Rate Variability (HRV) by detecting the Blood Volume Pulse (BVP) from human facial video recordings while the subject is in a resting condition. In this thesis, we focus on the measurement of HR.
We adopt an algorithm that uses the Independent Component Analysis (ICA) to separate the source (physiological) signal from noise in the RGB channels of a facial video. We generalize existing methods to support subject movement during video recording. When a subject is moving, the face may be turned away from the camera. We utilize multiple cameras to enable the algorithm to monitor the vital sign continuously, even if the subject leaves the frame or turns away from a subset of the system’s cameras. Furthermore, we improve the accuracy of existing methods by implementing a light equalization scheme to reduce the effect of shadows and unequal facial light on the HR estimation, a machine learning method to select the most accurate channel outputted by the ICA module, and a regression technique to adjust the initial HR estimate. We systematically test our method on eleven subjects using four cameras. The proposed method decreases the RMSE by 27% compared to the state of the art in the rest condition. When the subject is in motion, the proposed method achieves a RMSE of 1.12 bpm using a single camera and RMSE of 0.96 bpm using multiple camera.
|
2 |
Remote heart rate estimation by evaluating measurements from multiple signals / Pulsmätning på avstånd genom viktning av mätvärden från olika signalerUggla Lingvall, Kristoffer January 2017 (has links)
Heart rate can say a lot about a person's health. While most conventional methods for heart rate measurement require contact with the subject, these are not always applicable. In this thesis, a non-invasive method for pulse detection is implemented and analyzed. Different signals from the color of the forehead—including the green channel, the hue channel and different ICA and PCA components—are inspected, and their resulted heart rates are weighted together according to the significance of their FFT peaks. The system is tested on videos with different difficulties regarding the amount of movement and setting of the scene. The results show that the approach of weighting measurements from different signals together has great potential. The system in this thesis, however, does not perform very well on videos with a lot of movement because of motion noise. Though, with better, less noisy signals, good results can be expected. / En människas puls säger en hel del om dennes hälsa. För att mäta pulsenanvänds vanligtvis metoder som vidrör människan, vilket iblandär en nackdel. I det här examensarbetet tas en metod för pulsmätningpå avstånd fram, som endast använder klipp från en vanlig videokamera. Färgen i pannan mäts och utifrån den genereras flera signalersom analyseras, vilket resulterar i olika mätvärden för pulsen. Genomatt värdera dessa mätvärden med avseende på hur tydliga signalernaär, beräknas ett viktat medelvärde som ett slutgiltigt estimat på medelpulsen. Metoden testas på videoklipp med varierande svårighetsgrad,beroende på hur mycket rörelser som förekommer och på vilketavstånd från kameran försökspersonen står. Resultaten visar att metodenhar mycket god potential och att man kan man förvänta sig finaresultat med bättre, mindre brusiga signaler.
|
Page generated in 0.057 seconds