• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 12
  • 11
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 183
  • 110
  • 107
  • 41
  • 31
  • 31
  • 25
  • 24
  • 24
  • 24
  • 23
  • 22
  • 20
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Path planning for an unmanned terrestrial vehicle in an obstacle ridden environment

Ferreira, Thomas Ignatius 03 1900 (has links)
Thesis (MEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009. / This thesis relates to the successful development of an unmanned terrestrial vehicle (UTV) capable of operating in an obstacle ridden environment. The primary focus of the project is on the specific path planning algorithms. It is shown that specific methods of populating the obstacle-free space can be combined with methods of extracting the shortest path from these popula- tions. Through use of such combinations the successful generation of optimal collision-free paths is demonstrated. Previously developed modular architectures are combined and modified to create a UTV platform which meets all the requirements for implementation of navigational systems and path planning algorithms on board the platform. A two-dimensional kinematic state estimator is developed. This estimator makes use of extended Kalman Filter theory to optimally combine measurements from low cost sensors to yield the vehicle’s state vector. Lateral guidance controllers are developed to utilize this estimated state vector in a feedback control configuration. The entire system is then successfully demonstrated within a simulation environment. Finally, practical results from two days of test runs are provided in both written and interactive form
82

Mission tasking of unmanned vehicles

Johnson, Jada E. 06 1900 (has links)
Approved for public release, distribution is unlimited / Unmanned vehicles (UVs) are expected to be an integral part of the U.S. Navy's expeditionary and carrier strike groups and are quickly being integrated into maritime operations. Command and control issues must be resolved, however, in order to utilize unmanned systems as intelligence, surveillance, and reconnaissance assets. The purpose of this research was to assess the current doctrine of mission tasking with respect to tactical unmanned vehicles (UVs) and determine a method for effectively tasking these systems. The problem was analyzed by applying the factors of METT-T: mission, enemy, terrain and weather, troops and support available, and time available to UV-enabled maritime missions. The analysis identified specific implications for unmanned vehicles and emphasized important considerations for tasking and allocating UVs. METT-T analyses generally result in courses of action, however, tasking is a command and control issue, and therefore, four organizational structures emerge for tasking UVs A significant finding of this study is that the current doctrinal framework of the composite warfare commander's concept can support tasking unmanned vehicles, but requires revision to effectively address UV allocation issues. / Ensign, United States Navy
83

Real-time wind estimation and display for chem/bio attack response using UAV data

Sir, Cristian 06 1900 (has links)
Approved for public release; distribution is unlimited / The defense response to a Chemical and Biological attack would be importantly based on predicting the dispersion of a toxic cloud. Considering that an Unmanned Air Vehicle would provide the capability for embedding and positioning inertial and air data sensors geographically as required, real-time wind estimation can be performed for every actual position of the flying device in order to predict the plume moving direction. The efforts in this thesis concentrate on the demonstration and validation of procedures for obtaining Wind Estimation close to real-time and its instantaneous display. The presented work is based on a particular UAV platform available at the NPS Aeronautical Department and it aims to establish a general methodology, which may be used on other flying devices with similar available sensors. An accurate estimation of real wind for a particular combat scenario will enable operational units to have a near real-time decision aid. This final result could be integrated into a Command and Control net, to assist in a focused way the response to a Chemical and Biological attack and to map the source or the region to be affected. / Lieutenant Commander, Chilean Navy
84

Adaptive controller design for an autonomous twin-hulled surface vessel with uncertain displacement and drag

Unknown Date (has links)
The design and validation of a low-level backstepping controller for speed and heading that is adaptive in speed for a twin-hulled underactuated unmanned surface vessel is presented. Consideration is given to the autonomous launch and recovery of an underwater vehicle in the decision to pursue an adaptive control approach. Basic system identification is conducted and numerical simulation of the vessel is developed and validated. A speed and heading controller derived using the backstepping method and a model reference adaptive controller are developed and ultimately compared through experimental testing against a previously developed control law. Experimental tests show that the adaptive speed control law outperforms the non-adaptive alternatives by as much as 98% in some cases; however heading control is slightly sacrificed when using the adaptive speed approach. It is found that the adaptive control law is the best alternative when drag and mass properties of the vessel are time-varying and uncertain. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
85

The Virtuous Drone Pilot

Chapa, Joseph January 2014 (has links)
Thesis advisor: Kenneth Himes / This thesis responds to two distinct claims about drone (or remotely piloted aircraft) pilots. The first is the general claim that the martial virtues function as a kind of role morality for soldiers; the second, that drone pilots, based on the absence of personal risk and their distance from the battlefield, are unable to meet the demands of such a role morality. Chapter One explains what is meant by role morality, and determines whether the martial virtues do in fact function in a role morality capacity. The second chapter applies this general conception of a role morality for soldiers to military drone pilots in particular. This investigation finds that, insofar as "soldier" is in fact a role that generates a role morality, military drone pilots are as capable of meeting the demands of such a role morality as other military members. The second half of the thesis challenges the premise that drone pilots do not face personal risk. Chapter Three identifies psychological risk among drone pilots and seeks to determine how this kind of non-physical risk may affect the cultivation of the martial virtues. The fourth chapter argues that by placing military drone pilots within domestic territory, drone-capable militaries (such as the US military) have redrawn the battlespace such that it includes the drone operators, wherever they may be, and that as a result, drone pilots do in fact face some physical risk. Finally, in closing, this thesis presents a positive account of the martial virtues that enables military ethicists and strategists to bring centuries of philosophical investigation to bear on contemporary military issues. / Thesis (MA) — Boston College, 2014. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Philosophy.
86

Leveled flight control of an unmanned underwater vehicle operating in a wave induced environment

Unknown Date (has links)
Autonomous Underwater Vehicle (AUV) depth control methods typically use a pressure sensor to measure the depth, which results in the AUV following the trajectory of the surface waves. Through simulations, a controller is designed for the Ocean Explorer AUV with the objective of the AUV holding a constant depth below the still water line while operating in waves. This objective is accomplished by modeling sensors and using filtering techniques to provide the AUV with the depth below the still water line. A wave prediction model is simulated to provide the controller with knowledge of the wave disturbance before it is encountered. The controller allows for depth keeping below the still water line with a standard deviation of 0.04 and 0.65 meters for wave amplitudes of 0.1-0.25 and 0.5-2 meters respectively and wave frequencies of 0.35-1.0 𝑟𝑎𝑑⁄𝑠𝑒𝑐, and the wave prediction improves the depth control on the order of 0.03 meters. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
87

Estudo de estabilização de um veí­culo quadrimotor não tripulado com carga pendular. / Stabilization of an unmanned autonomous vehicle with slung load.

Rodrigo de Castro Baker Botelho 03 September 2018 (has links)
Este trabalho aborda o controle de um veículo aéreo não tripulado (VANT) com carga pendular acoplada. Veículos autônomos apresentam desafios de controle dadas suas características como não linearidades, acoplamento de movimentos, dinâmicas desconhecidas, distúrbios ambientais e ser um sistema do tipo subatuado. O veículo aqui estudado apresenta seis graus de liberdade relativos ao movimento de corpo livre do robô e dois graus de liberdade adicionados pela carga pendular acoplada. Seu modelo matemático é deduzido através das equações de Lagrange, linearizado em torno do ponto de operação e validado através de simulações. O projeto de controle é baseado nos controladores lineares dos tipos PID, LQR e H? para sistemas multivariáveis. Uma vez obtidos os controladores, são apresentadas as simulações para três cenários distintos considerando estabilização a partir de condições iniciais e perturbações e incertezas. Os controladores resultantes das sínteses são simulados com a planta linear e não linear e verificados conforme seu desempenho. / The present work is focused on the stabilization control of Unmanned Aerial Vehicles (UAV) connected with a slung load. UAV Control is a challenging subject due its characteristics such as non-linearities, coupling dynamics, unknown dynam-ics, environmental disturbances which they are subjected and their underactuated nature. The vehicle presents six degrees of freedom relative to its free body configu-ration and two additional degrees of freedom for it slung load coupling. The mathe-matical model is derived for this configuration through the Lagrange approach, further linearized around its operation point and validated through simulations. The Control Design is based on three different linear controllers, PID, LQR and H? for multivariate systems. Once designed, they are simulated with the linear-ized plant and the non-linearized plant considering three different scenarios for stabi-lization. Finally, the controllers are tested and simulated on a virtual model and the results are presented and discussed.
88

Estudo de estabilização de um veí­culo quadrimotor não tripulado com carga pendular. / Stabilization of an unmanned autonomous vehicle with slung load.

Botelho, Rodrigo de Castro Baker 03 September 2018 (has links)
Este trabalho aborda o controle de um veículo aéreo não tripulado (VANT) com carga pendular acoplada. Veículos autônomos apresentam desafios de controle dadas suas características como não linearidades, acoplamento de movimentos, dinâmicas desconhecidas, distúrbios ambientais e ser um sistema do tipo subatuado. O veículo aqui estudado apresenta seis graus de liberdade relativos ao movimento de corpo livre do robô e dois graus de liberdade adicionados pela carga pendular acoplada. Seu modelo matemático é deduzido através das equações de Lagrange, linearizado em torno do ponto de operação e validado através de simulações. O projeto de controle é baseado nos controladores lineares dos tipos PID, LQR e H? para sistemas multivariáveis. Uma vez obtidos os controladores, são apresentadas as simulações para três cenários distintos considerando estabilização a partir de condições iniciais e perturbações e incertezas. Os controladores resultantes das sínteses são simulados com a planta linear e não linear e verificados conforme seu desempenho. / The present work is focused on the stabilization control of Unmanned Aerial Vehicles (UAV) connected with a slung load. UAV Control is a challenging subject due its characteristics such as non-linearities, coupling dynamics, unknown dynam-ics, environmental disturbances which they are subjected and their underactuated nature. The vehicle presents six degrees of freedom relative to its free body configu-ration and two additional degrees of freedom for it slung load coupling. The mathe-matical model is derived for this configuration through the Lagrange approach, further linearized around its operation point and validated through simulations. The Control Design is based on three different linear controllers, PID, LQR and H? for multivariate systems. Once designed, they are simulated with the linear-ized plant and the non-linearized plant considering three different scenarios for stabi-lization. Finally, the controllers are tested and simulated on a virtual model and the results are presented and discussed.
89

Video resolution, frame rate and grayscale tradeoffs under limited bandwidth for undersea teleoperation

Ranadivé, Vivek January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Vivék Ranadivé. / M.S.
90

Modelling Vegetation Cover Types Using Multiseasonal Remotely Sensed Data to Compare Ecotones at Multiple Spatial and Spectral Resolutions

Patraw, Kimberly 01 May 1997 (has links)
The Army National Guard Bureau has implemented a cooperative project with Utah State University to help with the use, display, and evaluation of environmental data for maintaining land condition. Camp Grayling, Michigan, is comprised of deciduous and evergreen forest types. Use of remote sensing for classification has been limited in this region due to the difficulty of species-level classification using single-date remote-sensing techniques . Also, remote sensing has traditionally focused on mapping homogenous zones rather than vegetation boundaries, while one of the concerns for land managers is the nature of vegetation edges (ecotones). This study analyzed each season and band from multiseasonal satellite imagery for their contribution to separating vegetation type and density classes. Then spectral reflectance values for each vegetation and density class were used in discriminant models that define vegetation cover types and densities. These models were then tested against points within 200 m of vegetation boundaries to determine the performance of the models at edges of vegetation types . The reflectance values for vegetation types on Landsat Thematic Mapper (TM), Landsat MultiSpectral Sensor (MSS), and Advanced Very High Resolution Radiometer (AVHRR) imagery were used. Single-band separability decreased with decreasing resolution of the remote sensing data, and the number of spectral bands that could separate means of vegetation and density cover classes was much greater than expected . Winter bands provided more separability than expected for density classes . A VHRR data were shown to provide very little separation and were not included in the discriminant analysis. In the evaluation of the discriminant models, both resubstitution and crossvalidation tests showed that TM and MSS were nearly equal in their ability to discriminate cover types and densities. At the vegetation boundary zones, classification accuracy increased with increasing distance from the edge. These results are encouraging for future classification and monitoring of ecotones using satellite imagery, as picture elements (pixels) of ecotones generally exhibit the characteristics of a mixing of the boundary vegetation types. Further investigation into fuzzy set classification and ecotone classification and monitoring appears warranted.

Page generated in 0.0438 seconds