• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1148
  • 270
  • 103
  • 74
  • 68
  • 58
  • 47
  • 40
  • 25
  • 14
  • 13
  • 11
  • 10
  • 9
  • 8
  • Tagged with
  • 2274
  • 2274
  • 723
  • 567
  • 456
  • 321
  • 282
  • 262
  • 253
  • 247
  • 239
  • 210
  • 194
  • 177
  • 171
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Synthesis, characterization and photophysical studies of RU(II)bipyridyl-dithiocarbamate complexes as sensitizers for dye sensitized solar cells

Fudo, Zintle January 2018 (has links)
The depletion of fossil fuels and the increasing energy demand for energy has led to the search for better and improved technologies with special focus renewable energy, especially solar cells. The first generation solar cells based on silicon are expensive, hence dye sensitized solar cells come in as a better alternative as these solar cells are environmental friendly, they have moderately good conversion efficiency and they are relatively cheap to produce. Dithiocarbamate ligands have been widely used in many research fields, as these are versatile ligands. Coordination of dithiocarbamates with metals such as ruthenium has produced high conversion efficiency and have the ability to extend the MLCT absorptions, and this can further extend their wavelength. In this study five dithiocarbamate sodium salt ligands were prepared and were coded as FL1= Aniline, FL2= p- toluidine, FL3= p- anisidine, FL4=dibenzyl, FL5=diphenyl. These ligands were used to synthesize Ru(II) metal complexes which were formulated as [Ru(FLx)(dcbpy)(NCS)] and [Ru(FLx)2(dcbpy)] where FLx is the dithiocarbamate ligand and dcbpy is 2,2-bipyridine-4,4’-dicarboxylic acid and the complexes were coded as FCx. The synthesized compounds were characterized using techniques such as the melting point, molar conductivity, FT-IR and NMR spectroscopy. For spectroelectrochemical studies of the metal complexes, techniques such as UV-Vis and photoluminescence spectroscopy were carried out. Furthermore, redox properties of the complexes were analyzed using cyclic and square wave voltammetry. The FT-IR displayed all the expected peaks of interest both in the dithiocarbamate ligands and in the metal complexes. The electronic spectra confirmed the successful coordination of ligand to the metal centre, the electronic spectra of the complexes also confirmed the six coordinate octahedral geometry of the complexes. The complexes exhibited some photoluminescence properties that are suitable for dye sensitization. The cyclic voltammogram of the complexes displayed more reduction potentials that could be attributed to the π-conjugation in the ligands incorporated during synthesis. The square wave voltammogram of the complexes is in agreement with the results obtained in cyclic voltammetry.
302

Renewable Energy Penetration Planning For Remote Power Grid

January 2012 (has links)
abstract: Power generation in remote isolated places is a tough problem. Presently, a common source for remote generation is diesel. However, diesel generation is costly and environmental unfriendly. It is promising to replace the diesel generation with some clean and economical generation sources. The concept of renewable generation offers a solution to remote generation. This thesis focuses on evaluation of renewable generation penetration in the remote isolated grid. A small town named Coober Pedy in South Australia is set as an example. The first task is to build the stochastic models of solar irradiation and wind speed based on the local historical data. With the stochastic models, generation fluctuations and generation planning are further discussed. Fluctuation analysis gives an evaluation of storage unit size and costs. Generation planning aims at finding the relationships between penetration level and costs under constraint of energy sufficiency. The results of this study provide the best penetration level that makes the minimum energy costs. In the case of Coober Pedy, cases of wind and photovoltaic penetrations are studied. The additional renewable sources and suspended diesel generation change the electricity costs. Results show that in remote isolated grid, compared to diesel generation, renewable generation can lower the energy costs. / Dissertation/Thesis / M.S. Electrical Engineering 2012
303

Remoção de lignina e hemicelulose : influência na acessibilidade à celulose e sacarificação enzimática /

Shimizu, Felipe Lange. January 2018 (has links)
Título original: Remoção de lignina e hemicelulose influencia na acessibilidade à celulose e digestibilidade enzimática / Orientador: Michel Brienzo / Banca: Fernanda Perpetua Casciatori / Banca: Jonas Contiero / Resumo: A biomassa lignocelulósica, como a proveniente da cana-de-açúcar, é uma fonte abundante de resíduo que pode ser usado como matéria-prima na produção de energia. Para melhor aproveitar essa biomassa, moagem e pré-tratamentos podem ser usados para alterar a estrutura do material lignocelulósico, remover lignina e hemicelulose, expondo a celulose e assim aumentando sua acessibilidade. A acessibilidade à celulose tem sido indicada como uma das propriedades mais importantes para uma boa digestibilidade enzimática. Entretanto, as biomassas geradas da cana-de-açúcar possuem características físico-químicas diferentes, respondendo de modo diferente aos pré-tratamentos. Neste contexto, este estudo teve como objetivo verificar os efeitos da remoção de lignina e hemicelulose das biomassas da cana-de-açúcar (fração externa, entrenó, nó e folha) na acessibilidade à celulose. A cana-de-açúcar foi fracionada em fração externa, nó, entrenó e folha. Cada fração passou pelos pré-tratamentos ácido (5, 10, 20 %, m/m massa de ácido por massa de material, a 121°C/30 min), alcalino (5, 10, 20 e 30 % NaOH m/m) e oxidativo (0,5, 1, 2 e 3 horas com clorito de sódio 30 %). As amostras foram caracterizadas quanto ao seu conteúdo de celulose, hemicelulose e lignina. A determinação de acessibilidade foi realizada com corantes Direct, Orange (superfície específica externa), Direct Blue (superfície específica interna) e Vermelho Congo (superfície total). A hidrólise enzimática (15 FPU/g de material, Cellic C... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The lignocellulosic biomass, such as the provided by the sugarcane, is an abundant source of raw materials for energy production. In order to better use this biomass, milling and pretreatments can be employed to alter the structure of the materials, remove lignin and hemicellulose. This effect exposes the cellulose and raises its accessibility, which is is one of the most important property to ensure enzymatic digestibility. However, the biomass generated from the sugarcane have different physicochemical characteristics, giving different responses to the pretreatments. In this context, this study aimed to verify the effects of lignin and hemicellulose removal from the sugarcane biomass (external fraction, node, internode and leaf) on cellulose accessibility. The sugarcane was fractioned in external fraction, node, internode and leaf. Each fraction was pretreated with acid (5, 10, 20 % m/m acid mass per material mass, at 121°C/30 min), alkaline (5, 10, 20, 30 % NaOH m/m) oxidative (0,5, 1, 2,3 h charged with 30 % sodium chlorite). The chemical composition of the samples was determined based on cellulose, hemicellulose and lignin contents. Accessibility was determined by dye adsorption of Direct Orange (external specific surface), Direct Blue (internal specific surface) and Congo Red (total surface). Enzymatic hydrolysis (15 FPU/g of biomass, Cellic Ctec 2 - Novozymes) was used to verify the effects of pretreatments and cellulose accessibility on the glucose yield. All studied... (Complete abstract click electronic access below) / Mestre
304

The Effects of Environmental Values and Political Ideology on Public Support for Renewable Energy Policy in Ottawa, Canada

Fobissie Blese, Elsie 03 August 2018 (has links)
Abstract / Resumé The Ontario provincial government faces the challenge of getting public support in the implementation of its RE policy. This thesis aims at investigating the effects of environmental values and political ideology on public support for renewable energy policy in Ottawa, Canada. Data was collected through open-ended interviews with fifty respondents in and around Ottawa, transcribed, coded and analysed using the NVivo software. Results indicate that environmental values and political ideology affect public support for renewable energy policy, but economic factors also play a role. The provincial government can think of ways to reduce the cost of electricity, invest on education and the creation of awareness on the benefits of renewable energy and the different initiatives that are offered by the RE policy to increase public support. Public ownership of RE projects and more democratic policy-making could also increase public support. Le gouvernement provincial de l'Ontario fait face au défi d'obtenir le soutien public dans la mise en œuvre de sa politique d'ER. Cette thèse vise à étudier les effets des valeurs environnementales et de l'idéologie politique sur le soutien public à la politique sur l'énergie renouvelable à Ottawa, au Canada. Les données ont été recueillies par les entrevues ouvertes avec une cinquantaine de répondants à Ottawa et dans les environs. Ils ont été transcrits, codées et analysées à l'aide du logiciel NVivo. Les résultats indiquent que les valeurs environnementales et l'idéologie politique affectent le soutien public à la politique d'énergie renouvelable, mais les facteurs économiques jouent également un rôle. Le gouvernement provincial peut réfléchir à des moyens de réduire le coût de l'électricité, investir dans l'éducation et sensibiliser les gens aux avantages de l'ER et aux différentes initiatives offertes par la politique sur l'ER pour accroître le soutien public. La propriété publique de projets d'ER et l'élaboration de politiques plus démocratiques pourrait également accroître le soutien public.
305

Modelling and characterisation of the pyrolysis of secondary refuse fuel briquettes and biomass materials

Liu, Yi January 2010 (has links)
This research was established due to an increase of interest in renewable energy sources and utilisation of various wastes and biomass. Gasification is currently one of the most promising thermal-chemical conversion techniques for recovering energy from waste, and the pyrolytic behaviour of secondary refuse fuel (SRF) briquettes and biomass-derived fuels is the starting point for the process. The purpose of this study was to evaluate the pyrolytic characteristics of SRF briquettes and biomass materials, suggest a kinetic model for simulating the pyrolytic process and obtaining the kinetic parameters, and then predict the yield of volatile products in pyrolysis. Knowledge of the chemical composition, the thermal behaviour and the reactivity of SRF briquettes and their blends with other materials, such as biomass and plastic during pyrolysis is very important for the effective design operation of gasification units. The kinetics of the pyrolysis of simulated SRF briquettes, SRF briquettes and pulverised biomass samples was successfully modelled by a scheme consisting of two independent general order parallel reactions of the main components which were hemicellulose, cellulose, lignin and plastic. The kinetic parameters estimated through the model were comparable with those reported in the literature. In this research, activation energy values varied between 30 – 70 kJ/mol for lignin pyrolysis, 96 – 137 kJ/mol for hemicellulose and cellulose pyrolysis, and about 260 kJ/mol for plastic pyrolysis. Biomass has a very high volatile content. Adding biomass into SRF briquettes could increase the volatile yield. Increasing the plastic content of SRF briquettes could increase the volatile yield, the derivative thermogravimetric (DTG) peak height and the repeatability of pyrolysis. Inorganic component could shift the cellulose pyrolysis to a lower temperature and cause the hemicellulose pyrolysis and the cellulose pyrolysis highly overlapped, but it could have a positive effect by acting as catalysts and lower the activation energy in the pyrolysis of hemicellulose and cellulose. Molasses used as a binder could improve the DTG peak height and restrain the curve shifting effect of inorganic component on the hemicellulose and cellulose pyrolysis, but couldn’t restrain the lignin pyrolysis at low temperatures during the hemicellulose and cellulose pyrolysis. Molasses could restrain the effect of the lignin pyrolysis at high temperatures on the plastic pyrolysis. Mechanical biological treatment (MBT) process could highly improve the volatile yield and improve the DTG peak height of SRF briquettes.
306

Computational design of a smart and efficient control system for a residential air source heat pump water heater

Yongoua Nana Joel January 2017 (has links)
An air source heat pump (ASHP) water heater is a renewable and energy efficient hot water heating technology. ASHP water heaters are fast gaining maturity in the South African market and in Africa at large due to their low energy consumption (about 67 percent lower than conventional geysers), relatively low installation and operation cost, their environmental friendly nature and possibly the ease to retrofit with the old inefficient technologies. Furthermore, ASHP water heaters make use of some of the most recent advancement in refrigeration technologies enhancing their performance through a wide range of weather conditions. However, residential ASHP water heaters which come at the tail of a series of highly sophisticated models still harbour primitive control designs. One of such control system is the intermittent (on/off) control whereby the ASHP unit responds to a temperature differential threshold rather than instantaneous temperature fluctuations. Unfortunately, this control method contributes to a rapid deterioration of the compressor and other actuators due to high starting current during transient states and partial loading. Capacity control is a better alterative as it offers a more reliable system’s performance as well as a better protection for the system components. However, the drawbacks of implementing such a technology on residential ASHP water heaters is the initial purchasing cost. We use a systematic approach in this research to circumvent the purchasing cost and complete redesign hysteresis. The first step was centered around a hypothetical analysis of the performance of the heat exchangers in a bid to uncover the weakness during the operation of a residential ASHP water heater. It was observed that at ambient temperatures above 22°C notably during summer and winter afternoons, water only harnesses about 75 percent of the total heat rejected. Furthermore, the actuators keep doing work for about 15-20 minutes even after the heat transfer process has ceased completely. Following these observations, a sequential flow algorithm was developed aimed at matching the consumption point to weather variables like ambient temperature and secondly to most efficiently synchronize actuator components for a better energy management. This novel control method can save up to 58 percent of energy compared to the conventional on/off method during summer afternoons and averagely 20 percent during the rest of the day. It also has the merit to be cost effective as it barely requires no component retrofitting.
307

Smart Student Table

Albazi, Waleed January 2018 (has links)
The objective of this study is to develop what is called aStudent table, which is designed specifically for school children in emergency circumstances, so it will be suitable for partial solutions for the problems facing children in refugee camps, who are forced to leave their homes and schools. The idea of the study focuses on the creation of the Student table so that the generation of electricity will be suitable for lighting and illumination with the use of some electronic devices used in daily school needs like laptops, so the solar cell system will be connected to a small generator through a hybrid system. A fully functional prototype has been built as part of the study. When the system works through the hybrid route for lighting and illumination the solar system will generate the power needed and when the sun light disappears the Power can be generated by bike pedals. The generation of electricity by the hybrid system is considered as an effective and environmentally friendly option with economic benefits.
308

Synthesis and characterization of CdSe quantum dots for solar cell application

Makinana, Sinovuyo January 2017 (has links)
This study shows a detailed report on the morphological, structural and optical properties of CdSe QDs synthesised by the hot injection method. Cadmium acetate dihydrate and Se powder were used as cadmium and selenide precursors, respectively. Various QD sizes were achieved by synthesizing in temperature range of 150ºC, 175ºC, 200ºC, 225ºC, 250ºC, 275ºC and 300ºC, respectively. The as synthesized QDs by the hot injection method were cross-examined for their morphological, structural and optical using HRTEM, FTIR, XRD, RS, and UV-Vis spectroscopy techniques respectively. FTIR analysis has revealed vibrations at 738, 738, 738, 738, 735, 735 and 733 cm-1 for the QDs synthesized at various temperatures of 150, 175, 200, 225, 250, 275, and 300℃, respectively. The presence of the above mentioned peaks confirms the presence of Cd-Se bond in our samples. XRD analysis of CdSe QDs revealed diffraction peaks at 2 angles of 16.66 , 25.20 , 34.77 , 40.9 , 45.39 and 49.1 for 150 17.4 , 25.22 , 34.85 , 41.7 , 44.45 and 47.5 for the QDs synthesized at various temperatures of 175 17.07 , 25.19 , 34.85 , 41.34 , 44.41 and 48.86 for 200 ; 16.34 , 25.20 , 34.76 , 40.6 , 44.74 and 49.48 for 225 ; 17.44 , 25.17 , 34.19 , 41.7 , 44.45 , 49.24 for 250 ; 16.70 , 25.16 , 34.85 , 40.32 , 45.1 and 49.1 7 for 275 ;and 17.35 , 25.18 , 35.13 , 41.63 , 45.7 , 49.48 for 300 . These XRD peaks relate to crystal planes of (100), (002), (102), (220), (103) and (112) which belong to hexagonal Wurtzite CdSe crystal structure. Additionally XRD analysis has revealed a general peak shift to higher 2 values was observed for CdSe QDs. HRTEM analysis showed that the synthesised CdSe QDs have a spherical shape and are monodispersed. Moreover, HRTEM analysis has revealed CdSe QDs modal crystallite size of 1.79 nm, 1.81 nm, 2.06 nm, 2.08 nm, 2.11 nm, 3.10 nm and 3.12 nm for the QDs synthesized at various temperatures of 150ºC, 175ºC, 200ºC, 225ºC, 250ºC, 275ºC and 300ºC, respectively. HRTEM results were in mutual agreement with XRD results. Additionally, the SAED images showed intense electron diffraction rings, which confirmed that the as-synthesised CdSe QDs have a Wurtzite crystal structure. RS analysis showed that CdSe QDs have LO and 2LO vibrational modes which are characteristic peaks for CdSe. The presence of these peaks in Raman spectra further supports our previous observation from XRD analysis and HRTEM analysis that the synthesized CdSe QDs have a Wurtzite crystal structure. The effect of synthesis temperature Raman peak shift, FHWH and peak intensity has been cross examined in this work, Moreover, the effect of increasing temperature on the peak shift, FWHM and peak intensity is discussed in detail below. UV-Vis analysis revealed an absorbance of CdSe QDs in higher wavelengths as temperature was increased. Furthermore, the Yu et al 2003 relation was used to calculate QD size and band gap energy of CdSe QDs. The results showed that QD size increases with increasing synthesis temperature, which is in agreement with HRTEM and XRD results.
309

Offshore power production and marine stakeholders : from understanding conflict to impact mitigation

Alexander, Karen January 2012 (has links)
Little is known about the impact of marine renewable energy installations upon the marine environment and those who use it. Harnessing marine energy will involve the offshore siting of energy extraction devices and their associated infrastructure. This will alter the local environment and substantially modify use and access for a variety of marine stakeholders, potentially leading to conflict. Using the Ecosystem Approach (EA) as a conceptual framework, this thesis aimed to answer the question: What is the potential for conflict between the marine renewable energy industry and marine stakeholders, and how can this be mitigated? The research consisted of three components which used a variety of methods: i) stakeholder identification through a review of the literature and use of a novel interactive mapping method; ii) an investigation of the potential consequences for the priority stakeholder which used a mail survey and in-depth interviews; and iii) an exploration of potential mitigation which used ecosystem modelling. The stakeholder most likely to be affected by marine renewable energy device (MRED) deployment was the fishing industry. Potential consequences included: navigation and safety hazards, loss of access and alternative employment. Further exploration revealed that a loss of livelihood was the all-encompassing concern for fishers, and that skills shortages (transferable skills) may mean that should a loss of livelihood occur there may not be acceptable alternative employment. The modelling exercise indicated that it is not currently possible to definitively predict whether any opportunities which may be created by MRED installation will mitigate any negative effects, and that exclusion zones may actually decrease catches for most fleets. The findings of this study have implications for ‘conflict-free’ development of the marine renewable energy industry. To address this, several policy recommendations were offered as regards to operationalising the EA in terms of marine renewable energy.
310

Predicting the ecosystem effects of harvesting beach-cast kelp for biofuel

Orr, Kyla Kathleen January 2013 (has links)
Beach‐cast kelp (principally Laminaria spp.), known as macroalgal wrack, has been suggested as a feedstock for biofuel. However, to be extracted sustainably it is necessary to understand its ecological role and predict the impacts of its removal. Field‐based observations combined with food web modelling were used to predict the ecosystem effects of removing wrack from beaches of the Uists, western Scotland. Beaches with wrack were associated with enriched benthic infauna (polychaetes) on the lower shore, and wrack mounds supported abundant macroinvertebrates (mainly Diptera larvae and oligochaetes); with some of the highest biomasses reported globally for beaches. These fauna are valuable prey to shorebirds, as demonstrated by a strong positive relationship (R2 = 0.82) between wader abundances and the percentage cover of wrack on beaches. Inshore, drifting macroalgae was associated with elevated abundances of detritivorous hyperbenthic fauna (mysids, isopods and gammarid amphipods). In addition, the volume of drifting macroalgae inshore was a significant predictor (along with physical beach characteristics) for the abundance of decapods and fish. Food web models and network analysis indicated that beaches which accumulate wrack had a greater diversity of trophic links and more functional redundancy, making their food webs more resilient to perturbations. Such perturbations may include stressors induced by climate change, such as increased erosion of sediments during storms, elevated atmospheric and sea surface temperatures and elevated CO2 concentrations. Model simulations of wrack harvesting predicted an immediate decline in primary consumers in direct proportion to the quantity of wrack removed, and a slow decline in shorebirds in response to reduced prey. Primary consumers were predicted to recover to their pre‐harvest biomasses within 1 to 2 years regardless of harvesting intensity, but recovery times for shorebirds were an order of magnitude longer, and increased with harvesting intensity. Harvesting more than 50% wrack predicted a ‘collapse’ in wader populations within 25 years, and recovery times of 45‐60 years were estimated if >70% wrack was removed. The findings of this thesis suggest wrack provides essential food and shelter to coastal fauna, and its large‐scale removal would have significant negative impacts to the ecosystem functioning.

Page generated in 0.107 seconds