• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 17
  • 17
  • 9
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elastic Prices and Volatile Energy Generation : Building and evaluating a regional demand response model

Dalén, Anders January 2010 (has links)
New possibilities are developing in the infrastructure of electrical systems to meet the new demand of more volatile power generation. This study focuses on German household reactions to price changes and their economic and renewable utilization effects.   In order to model the effects of flexible prices in the Freiamt region, the basic research – including interviews and data collecting – is carried out in the fields of economics and renewable energy. An elasticity model based on the Spees and Lave study in used to simulate consumer behaviour to changing prices.   Two pricing structures with daily and hourly changing prices are found to lower the average electrical prices in both cases. These benefits are larger overall with the hourly price changes when all other variables are kept constant. This study finds that the changes to load patterns also seem to correlate with the local renewable energy production. Results suggest that this specific form of energy generation benefits from consumer reactions to changing prices during 2007 and 2008.   In order to validate these results the model should be expanded to include a more differentiated load from different sectors and to include a wider range of the electrical prices advertised to the consumer. However, under given circumstances, this study concludes that using more renewable power generation is possible both generally with daily price changes and also more specifically with hourly changing prices at a more competitive market price.
2

A Data Analytics Framework for Smart Grids: Spatio-temporal Wind Power Analysis and Synchrophasor Data Mining

January 2013 (has links)
abstract: Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly organized into the following two parts: I) spatio-temporal wind power analysis for wind generation forecast and integration, and II) data mining and information fusion of synchrophasor measurements toward secure power grids. Part I is centered around wind power generation forecast and integration. First, a spatio-temporal analysis approach for short-term wind farm generation forecasting is proposed. Specifically, using extensive measurement data from an actual wind farm, the probability distribution and the level crossing rate of wind farm generation are characterized using tools from graphical learning and time-series analysis. Built on these spatial and temporal characterizations, finite state Markov chain models are developed, and a point forecast of wind farm generation is derived using the Markov chains. Then, multi-timescale scheduling and dispatch with stochastic wind generation and opportunistic demand response is investigated. Part II focuses on incorporating the emerging synchrophasor technology into the security assessment and the post-disturbance fault diagnosis of power systems. First, a data-mining framework is developed for on-line dynamic security assessment by using adaptive ensemble decision tree learning of real-time synchrophasor measurements. Under this framework, novel on-line dynamic security assessment schemes are devised, aiming to handle various factors (including variations of operating conditions, forced system topology change, and loss of critical synchrophasor measurements) that can have significant impact on the performance of conventional data-mining based on-line DSA schemes. Then, in the context of post-disturbance analysis, fault detection and localization of line outage is investigated using a dependency graph approach. It is shown that a dependency graph for voltage phase angles can be built according to the interconnection structure of power system, and line outage events can be detected and localized through networked data fusion of the synchrophasor measurements collected from multiple locations of power grids. Along a more practical avenue, a decentralized networked data fusion scheme is proposed for efficient fault detection and localization. / Dissertation/Thesis / Ph.D. Electrical Engineering 2013
3

Impact Of High-level Distributed Generation Penetration On The Transmission System Transient Stability

Kurt, Burcak 01 October 2009 (has links) (PDF)
This thesis investigates the impact of high-level penetration of distributed generation especially from the renewable energy sources on the transient stability of the transmission system. Distributed generation is a source of electric power connected to the distribution network or on the consumer side. It is expected that distributed generation grows significantly by the increasing environmental concerns and deregulation in the market. As soon as the increasing penetration level, distributed generation starts to influence the distribution system as well as the transmission system. To investigate the impact of distributed generation with different penetration levels on the transmission system transient stability, simulation scenarios are created and simulations are run on the basis of these scenarios by the implementation of the different distributed generation technologies to the &ldquo / New England&rdquo / test system. Stability indicators are observed to assess the impact on the transient stability. Results are presented throughout the thesis and the impact of the different distributed generation technologies and the different penetration levels on the transient stability is discussed by comparing the stability indicators.
4

Multi - Timescale Control of Energy Storage Enabling the Integration of Variable Generation

Zhu, Dinghuan 01 May 2014 (has links)
A two-level optimal coordination control approach for energy storage and conventional generation consisting of advanced frequency control and stochastic optimal dispatch is proposed to deal with the real power balancing control problem introduced by variable renewable energy sources (RESs) in power systems. In the proposed approach, the power and energy constraints on energy storage are taken into account in addition to the traditional power system operational constraints such as generator output limits and power network constraints. The advanced frequency control level which is based on the robust control theory and the decentralized static output feedback design is responsibl e for the system frequency stabilization and restoration, whereas the stochastic optimal dispatch level which is based on the concept of stochastic model predictive control (SMPC) determines the optimal dispatch of generation resources and energy storage under uncertainties introduced by RESs as well as demand. In the advanced frequency control level, low-order decentralized robust frequency controllers for energy storage and conventional generation are simultaneously designed based on a state-space structure-preserving model of the power system and the optimal controller gains are solved via an improved linear matrix inequality algorithm. In the stochastic optimal dispatch level, various optimization decomposition techniques including both primal and dual decompositions together with two different decomposition schemes (i.e. scenario-based decomposition and temporal-based decomposition) are extensively investigated in terms of convergence speed due to the resulting large-scale and computationally demanding SMPC optimization problem. A two-stage mixed decomposition method is conceived to achieve the maximum speedup of the SMPC optimization solution process. The underlying control design philosophy across the entire work is the so-called time-scale matching principle, i.e. the conventional generators are mainly responsible to balance the low frequency components of the power variations whereas the energy storage devices because of their fast response capability are employed to alleviate the relatively high frequency components. The performance of the proposed approach is tested and evaluated by numerical simulations on both the WECC 9-bus system and the IEEE New England 39-bus system.
5

Reconfiguration and Self-healing Mechanisms in Distribution Systems with High Distributed Generation (DG) Penetration

Zidan, Aboelsood Ali Abdelrohman January 2013 (has links)
Recently, interest in Smart Grid (SG) as a tool for modernization and automation of the current distribution system has rapidly increased. This interest can be explained by the common belief that SG technologies greatly enhance system reliability, power quality and overall efficiency. One of the most important objectives of an SG is to accommodate a wide variety of generation options. This objective aligns with the new trends and policies that encourage higher penetration levels of Distributed Generation (DG) according to environmental, regulatory and economical concerns. Most DG units are either renewable or low emission energy sources, thus meeting the Canadian emission portfolios, while they remain attractive for both utilities and customers for different reasons. DG units can postpone large investment in transmission and central generation, reduce energy losses, and increase system reliability and power quality. SG is centered on several objectives such as self-healing, motivating consumers to participate in grid operation, resisting attacks, accommodating a wide variety of DG units and storage devices, and optimizing assets. Yet, one of the main goals of SG is to increase the reliability of power systems. Reliability is a vital factor in power system performance, due to the full dependence of today???s life on electricity and the high cost of system outages, especially for critical loads. Therefore, one of the main salient features of SG is its ability of self-healing. The insertion of DG units changes distribution networks from being passive with unidirectional power flow and a single power source (the primary substation) towards active networks with multi-directional power flow and several power sources (the primary substation, along with DG units). As a result, the interconnection of DG units creates several impacts on different practices such as voltage profile, power flow, power quality, stability, reliability, fault detection, and restoration. Current policies call for the direct disconnection of all DG units once any failure occurs in the network. However, with a high DG power penetration, the utilities cannot operate the system efficiently without the DG units??? support. Furthermore, automatic disconnection of the DG units during faults reduces the expected benefits associated with DG units drastically. Motivated by the above facts, the overall target of this thesis is to introduce distribution system mechanisms to facilitate realizing the concept of Smart Distribution System (SDS) in both normal and emergency modes. In particular, three main functions are dealt with in this research work: distribution network reconfiguration, DG allocation and self-healing. First, for distribution network reconfiguration, a method based on genetic algorithm is presented to address the reconfiguration problem for distribution systems while the effect of load variation and the stochastic power generation of renewable-based DG units are taken into consideration. The presented method determines the annual distribution network reconfiguration scheme considering switching operation costs in order to minimize annual energy losses by determining the optimal configuration for each season of the year. Second, for DG allocation, a joint optimization algorithm has been proposed to tackle the DG allocation and network reconfiguration problems concurrently, as these two issues are inherently coupled. The two problems are dealt with together while the objectives are minimizing the cost, as an economic issue, and greenhouse gas emissions, as an environmental issue. The proposed method takes the probabilistic nature of both the renewable energy resources and loads into account. The last operation function dealt with in this thesis is distribution system restoration. In order to accomplish this function, two stages are presented: In the first stage, numerous practical aspects related to service restoration problem have been investigated. These aspects include variations in the load and customer priorities, price discounts for in-service customers based on their participation in a load-curtailment scheme that permits other customers to be supplied, the presence of manual and automated switches, and the incorporation of DG units (dispatchable and wind-based units) in the restoration process. In the second stage, the smart grid concept and technologies have been applied to construct a self-healing framework to be applied in smart distribution systems. The proposed multi-agent system is designed to automatically locate and isolate faults, and then decide and implement the switching operations to restore the out-of-service loads. Load variation has been taken into consideration to avoid the need for further reconfigurations during the restoration period. An expert-based decision-making algorithm has been used to govern the control agents. The rules have been extracted from the practical issues related to the service restoration problem, discussed in the first stage.
6

Design and control of a multicell interleaved converter for a hybrid photovoltaic-wind generation system

Da Silva, Joao Lucas 14 July 2017 (has links) (PDF)
The solution for the generating energy derived from non-polluting sources configures a worldwide problem, which is undetermined, complex, and gradual; and certainly, passes through the diversification of the energetic matrix. Diversification means not only having different sources converted into useful energy, like the electricity, but also decentralizing the energy generation in order to fit with higher adequacy the demand, which is decentralized too. Distributed Generation proposes this sort of development but in order to increase its penetration several technical barriers must be overpassed. One of them is related to the conversion systems, which must be more flexible, modular, efficient and compatible with the different energy sources, since they are very specific for a certain area. The present study drives its efforts towards this direction, i.e. having a system with several inputs for combining different renewable energy sources into a single and efficient power converter for the grid connection. It focuses on the design and control of an 11.7 kW hybrid renewable generation system, which contains two parallel circuits of photovoltaic panels and a wind turbine. A multicell converter divided in two stages accomplishes the convertion: Generation Side Converter (GSC) and Mains Side Converter (MSC). Two boost converters responsible for the photovoltaic generation and a rectifier and a third boost, for the wind constitue the GSC. It allows the conversion to the fixed output DC voltage, controlling individually and performing the maximum power point tracking in each input. On the other side, the single-phase 4- cell MSC accomplishes the connection to the grid through an LCL filter. This filter uses an Intercell Transformer (ICT) in the first inductor for reducing the individual ripple generated by the swicthing. The MSC controls the DC-link voltage and, by doing that, it allows the power flow from the generation elements to the network.
7

HIERARCHICAL DECENTRALIZED CONTROL TECHNIQUES OF A MODEL DC MICROGRID

Carbone, Marc A. 13 September 2016 (has links)
No description available.
8

Assessment, Planning and Control of Voltage and Reactive Power in Active Distribution Networks

Farag, Hany Essa Zidan January 2013 (has links)
Driven by economic, technical and environmental factors, the energy sector is currently undergoing a profound paradigm shift towards a smarter grid setup. Increased intake of Distributed and Renewable Generation (DG) units is one of the Smart Grid (SG) pillars that will lead to numerous advantages among which lower electricity losses, increased reliability and reduced greenhouse gas emissions are the most salient. The increase of DG units’ penetration will cause changes to the characteristics of distribution networks from being passive with unidirectional power flow towards Active Distribution Networks (ADNs) with multi-direction power flow. However, such changes in the current distribution systems structure and design will halt the seamless DG integration due to various technical issues that may arise. Voltage and reactive power control is one of the most significant issues that limit increasing DG penetration into distribution systems. On the other hand, the term microgrid has been created to be the building block of ADNs. A microgrid should be able to operate in two modes of operation, grid-connected or islanded. The successful implementation of the microgrid concept demands a proper definition of the regulations governing its integration in distribution systems. In order to define such regulations, an accurate evaluation of the benefits that microgrids will bring to customers and utilities is needed. Therefore, there is a need for careful consideration of microgrids in the assessment, operation, planning and design aspects of ADNs. Moreover, SG offers new digital technologies to be combined with the existing utility grids to substantially improve the overall efficiency and reliability of the network. Advanced network monitoring, two ways communication acts and intelligent control methods represent the main features of SG. Thus it is required to properly apply these features to facilitate a seamless integration of DG units in ADNs considering microgrids. Motivated by voltage and reactive power control issues in ADNs, the concept of microgrids, and SG technologies, three consequent stages are presented in this thesis. In the first stage, the issues of voltage and reactive power control in traditional distribution systems are addressed and assessed in order to shed the light on the potential conflicts that are expected with high DG penetration. A simple, yet efficient and generic three phase power flow algorithm is developed to facilitate the assessment. The results show that utility voltage and reactive power control devices can no longer use conventional control techniques and there is a necessity for the evolution of voltage and reactive power control from traditional to smart control schemes. Furthermore, a probabilistic approach for assessing the impacts of voltage and reactive power constraints on the probability of successful operation of islanded microgrids and its impacts on the anticipated improvement in the system and customer reliability indices is developed. The assessment approach takes into account: 1) the stochastic nature of DG units and loads variability, 2) the special philosophy of operation for islanded microgrids, 3) the different configurations of microgrids in ADNs, and 4) the microgrids dynamic stability. The results show that voltage and reactive power aspects cannot be excluded from the assessment of islanded microgrids successful operation. The assessment studies described in the first stage should be followed by new voltage and reactive power planning approaches that take into account the characteristics of ADNs and the successful operation of islanded microgrids. Feeders shunt capacitors are the main reactive power sources in distribution networks that are typically planned to be located or reallocated in order to provide voltage support and reduce the energy losses. Thus, in the second stage, the problem of capacitor planning in distribution network has been reformulated to consider microgrids in islanded mode. The genetic algorithm technique (GA) is utilized to solve the new formulation. The simulation results show that the new formulation for the problem of capacitor planning will facilitate a successful implementation of ADNs considering islanded microgrids. In the third stage, the SG technologies are applied to construct a two ways communication-based distributed control that has the capability to provide proper voltage and reactive power control in ADNs. The proposed control scheme is defined according to the concept of multiagent technology, where each voltage and reactive power control device or DG unit is considered as a control agent. An intelligent Belief-Desire-Intention (BDI) model is proposed for the interior structure of each control agent. The Foundation for Intelligent Physical Agents (FIPA) performatives are used as communication acts between the control agents. First, the distributed control scheme is applied for voltage regulation in distribution feeders at which load tap changer (LTC) or step voltage regulators are installed at the begging of the feeder. In this case, the proposed control aims to modify the local estimation of the line drop compensation circuit via communication. Second, the control scheme is modified to take into consideration the case of multiple feeders having a substation LTC and unbalanced load diversity. To verify the effectiveness and robustness of the proposed control structure, a multiagent simulation model is proposed. The simulation results show that distributed control structure has the capability to mitigate the interference between DG units and utility voltage and reactive power control devices.
9

Assessment, Planning and Control of Voltage and Reactive Power in Active Distribution Networks

Farag, Hany Essa Zidan January 2013 (has links)
Driven by economic, technical and environmental factors, the energy sector is currently undergoing a profound paradigm shift towards a smarter grid setup. Increased intake of Distributed and Renewable Generation (DG) units is one of the Smart Grid (SG) pillars that will lead to numerous advantages among which lower electricity losses, increased reliability and reduced greenhouse gas emissions are the most salient. The increase of DG units’ penetration will cause changes to the characteristics of distribution networks from being passive with unidirectional power flow towards Active Distribution Networks (ADNs) with multi-direction power flow. However, such changes in the current distribution systems structure and design will halt the seamless DG integration due to various technical issues that may arise. Voltage and reactive power control is one of the most significant issues that limit increasing DG penetration into distribution systems. On the other hand, the term microgrid has been created to be the building block of ADNs. A microgrid should be able to operate in two modes of operation, grid-connected or islanded. The successful implementation of the microgrid concept demands a proper definition of the regulations governing its integration in distribution systems. In order to define such regulations, an accurate evaluation of the benefits that microgrids will bring to customers and utilities is needed. Therefore, there is a need for careful consideration of microgrids in the assessment, operation, planning and design aspects of ADNs. Moreover, SG offers new digital technologies to be combined with the existing utility grids to substantially improve the overall efficiency and reliability of the network. Advanced network monitoring, two ways communication acts and intelligent control methods represent the main features of SG. Thus it is required to properly apply these features to facilitate a seamless integration of DG units in ADNs considering microgrids. Motivated by voltage and reactive power control issues in ADNs, the concept of microgrids, and SG technologies, three consequent stages are presented in this thesis. In the first stage, the issues of voltage and reactive power control in traditional distribution systems are addressed and assessed in order to shed the light on the potential conflicts that are expected with high DG penetration. A simple, yet efficient and generic three phase power flow algorithm is developed to facilitate the assessment. The results show that utility voltage and reactive power control devices can no longer use conventional control techniques and there is a necessity for the evolution of voltage and reactive power control from traditional to smart control schemes. Furthermore, a probabilistic approach for assessing the impacts of voltage and reactive power constraints on the probability of successful operation of islanded microgrids and its impacts on the anticipated improvement in the system and customer reliability indices is developed. The assessment approach takes into account: 1) the stochastic nature of DG units and loads variability, 2) the special philosophy of operation for islanded microgrids, 3) the different configurations of microgrids in ADNs, and 4) the microgrids dynamic stability. The results show that voltage and reactive power aspects cannot be excluded from the assessment of islanded microgrids successful operation. The assessment studies described in the first stage should be followed by new voltage and reactive power planning approaches that take into account the characteristics of ADNs and the successful operation of islanded microgrids. Feeders shunt capacitors are the main reactive power sources in distribution networks that are typically planned to be located or reallocated in order to provide voltage support and reduce the energy losses. Thus, in the second stage, the problem of capacitor planning in distribution network has been reformulated to consider microgrids in islanded mode. The genetic algorithm technique (GA) is utilized to solve the new formulation. The simulation results show that the new formulation for the problem of capacitor planning will facilitate a successful implementation of ADNs considering islanded microgrids. In the third stage, the SG technologies are applied to construct a two ways communication-based distributed control that has the capability to provide proper voltage and reactive power control in ADNs. The proposed control scheme is defined according to the concept of multiagent technology, where each voltage and reactive power control device or DG unit is considered as a control agent. An intelligent Belief-Desire-Intention (BDI) model is proposed for the interior structure of each control agent. The Foundation for Intelligent Physical Agents (FIPA) performatives are used as communication acts between the control agents. First, the distributed control scheme is applied for voltage regulation in distribution feeders at which load tap changer (LTC) or step voltage regulators are installed at the begging of the feeder. In this case, the proposed control aims to modify the local estimation of the line drop compensation circuit via communication. Second, the control scheme is modified to take into consideration the case of multiple feeders having a substation LTC and unbalanced load diversity. To verify the effectiveness and robustness of the proposed control structure, a multiagent simulation model is proposed. The simulation results show that distributed control structure has the capability to mitigate the interference between DG units and utility voltage and reactive power control devices.
10

Robust Corrective Topology Control for System Reliability and Renewable Integration

January 2015 (has links)
abstract: Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration. This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line to suggest switching actions that can be used in a dynamic security assessment tool in real-time. The proposed robust topology control algorithm can also generate multiple corrective switching actions for a particular contingency. The solution obtained from the robust topology control algorithm is guaranteed to be feasible for the entire uncertainty set, i.e., a range of system operating states. Furthermore, this research extends the benefits of robust corrective topology control to renewable resource integration. In recent years, the penetration of renewable resources in electrical power systems has increased. These renewable resources add more complexities to power system operations, due to their intermittent nature. This research presents robust corrective topology control as a congestion management tool to manage power flows and the associated renewable uncertainty. The proposed day-ahead method determines the maximum uncertainty in renewable resources in terms of do-not-exceed limits combined with corrective topology control. The results obtained from the topology control algorithm are tested for system stability and AC feasibility. The scalability of do-not-exceed limits problem, from a smaller test case to a realistic test case, is also addressed in this research. The do-not-exceed limit problem is simplified by proposing a zonal do-not-exceed limit formulation over a detailed nodal do-not-exceed limit formulation. The simulation results show that the zonal approach is capable of addressing scalability of the do-not-exceed limit problem for a realistic test case. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015

Page generated in 0.1477 seconds