• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 36
  • 30
  • 29
  • 26
  • 17
  • 15
  • 14
  • 12
  • 8
  • 8
  • 8
  • 8
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Design of Intelligent Internet of Things and Internet of Bodies Sensor Nodes

Shitij Tushar Avlani (11037774) 23 July 2021 (has links)
<div>Energy-efficient communication has remained the primary bottleneck in achieving fully energy-autonomous IoT nodes. Several scenarios including In-Sensor-Analytics (ISA), Collaborative Intelligence (CI) and Context-Aware-Switching (CAS) of the cluster-head during CI have been explored to trade-off the energies required for communication and computation in a wireless sensor network deployed in a mesh for multi-sensor measurement. A real-time co-optimization algorithm was developed for minimizing the energy consumption in the network for maximizing the overall battery lifetime of individual nodes.</div><div><br></div><div>The difficulty of achieving the design goals of lifetime, information accuracy, transmission distance, and cost, using traditional battery powered devices has driven significant research in energy-harvested wireless sensor nodes. This challenge is further amplified by the inherent power intensive nature of long-range communication when sensor networks are required to span vast areas such as agricultural fields and remote terrain. Solar power is a common energy source is wireless sensor nodes, however, it is not reliable due to fluctuations in power stemming from the changing seasons and weather conditions. This paper tackles these issues by presenting a perpetually-powered, energy-harvesting sensor node which utilizes a minimally sized solar cell and is capable of long range communication by dynamically co-optimizing energy consumption and information transfer, termed as Energy-Information Dynamic Co-Optimization (EICO). This energy-information intelligence is achieved by adaptive duty cycling of information transfer based on the total amount of energy available from the harvester and charge storage element to optimize the energy consumption of the sensor node, while employing event driven communication to minimize loss of information. We show results of continuous monitoring across 1Km without replacing the battery and maintaining an information accuracy of at least 95%.</div><div><br></div><div>Decades of continuous scaling in semiconductor technology has resulted in a drastic reduction in the cost and size of unit computing. This has enabled the design and development of small form factor wearable devices which communicate with each other to form a network around the body, commonly known as the Wireless Body Area Network (WBAN). These devices have found significant application for medical purposes such as reading surface bio-potential signals for monitoring, diagnosis, and therapy. One such device for the management of oropharyngeal swallowing disorders is described in this thesis. Radio wave transmission over air is the commonly used method of communication among these devices, but in recent years Human Body Communication has shown great promise to replace wireless communication for information exchange in a WBAN. However, there are very few studies in literature, that systematically study the channel loss of capacitive HBC for <i>wearable devices</i> over a wide frequency range with different terminations at the receiver, partly due to the need for <i>miniaturized wearable devices</i> for an accurate study. This thesis also measures and explores the channel loss of capacitive HBC from 100KHz to 1GHz for both high-impedance and 50Ohm terminations using wearable, battery powered devices; which is mandatory for accurate measurement of the HBC channel-loss, due to ground coupling effects. The measured results provide a consistent wearable, wide-frequency HBC channel loss data and could serve as a backbone for the emerging field of HBC by aiding in the selection of an appropriate operation frequency and termination.</div><div><br></div><div>Lastly, the power and security benefits of human body communication is demonstrated by extending it to animals (animal body communication). A sub-inch^3, custom-designed sensor node is built using off the shelf components which is capable of sensing and transmitting biopotential signals, through the body of the rat at significantly lower powers compared to traditional wireless transmissions. In-vivo experimental analysis proves that ABC successfully transmits acquired electrocardiogram (EKG) signals through the body with correlation accuracy >99% when compared to traditional wireless communication modalities, with a 50x reduction in power consumption.</div>
42

FUTURISTIC AIR COMPRESSOR SYSTEM DESIGN AND OPERATION BY USING ARTIFICIAL INTELLIGENCE

Babak Bahrami Asl (5931020) 16 January 2020 (has links)
<div>The compressed air system is widely used throughout the industry. Air compressors are one of the most costly systems to operate in industrial plants in therms of energy consumption. Therefore, it becomes one of the primary target when it comes to electrical energy and load management practices. Load forecasting is the first step in developing energy management systems both on the supply and user side. A comprehensive literature review has been conducted, and there was a need to study if predicting compressed air system’s load is a possibility. </div><div><br></div><div>System’s load profile will be valuable to the industry practitioners as well as related software providers in developing better practice and tools for load management and look-ahead scheduling programs. Feed forward neural networks (FFNN) and long short-term memory (LSTM) techniques have been used to perform 15 minutes ahead prediction. Three cases of different sizes and control methods have been studied. The results proved the possibility of the forecast. In this study two control methods have been developed by using the prediction. The first control method is designed for variable speed driven air compressors. The goal was to decrease the maximum electrical load for the air compressor by using the system's full operational capabilities and the air receiver tank. This goal has been achieved by optimizing the system operation and developing a practical control method. The results can be used to decrease the maximum electrical load consumed by the system as well as assuring the sufficient air for the users during the peak compressed air demand by users. This method can also prevent backup or secondary systems from running during the peak compressed air demand which can result in more energy and demand savings. Load management plays a pivotal role and developing maximum load reduction methods by users can result in more sustainability as well as the cost reduction for developing sustainable energy production sources. The last part of this research is concentrated on reducing the energy consumed by load/unload controlled air compressors. Two novel control methods have been introduced. One method uses the prediction as input, and the other one doesn't require prediction. Both of them resulted in energy consumption reduction by increasing the off period with the same compressed air output or in other words without sacrificing the required compressed air needed for production.</div><div><br></div>

Page generated in 0.0501 seconds