Spelling suggestions: "subject:"replicate"" "subject:"replicated""
21 |
Mathematical models of social-ecological systems: Coupling human behavioural and environmental dynamicsSun, Tithnara Anthony 31 March 2020 (has links)
There is an increasing concern for the impact of humans on the environment.
Traditionally, ecological models consider human influence as a constant or linearly varying parameter, whereas socioeconomic models and frameworks tend to oversimplify the ecological system.
But tackling complex environmental challenges faced by our societies requires interdisciplinary approaches due to the intricate feedbacks between the socioeconomic and ecological systems involved.
Thus, models of social-ecological systems couple an ecological system with a socioeconomic system
to investigate their interaction in the integrated dynamical system.
We define this coupling formally and apply the social-ecological approach to three ecological cases.
Indeed, we focus on eutrophication in shallow freshwater lakes, which is a well-known system showing bistability between a clear water state and a turbid polluted state.
We also study a model accounting for an aquifer (water stock) and a model accounting for a biotic population exhibiting bistability through an Allee effect.
The socioeconomic dynamics is driven by the incentive that agents feel to act in a desirable or undesirable way.
This incentive can be represented by a difference in utility, or in payoff, between two strategies that each agent can adopt: agents can cooperate and act in an environment-friendly way, or they can defect and act in an ecologically undesirable way.
The agents' motivation includes such factors as the economic cost of their choice, the concern they feel for the environment and conformism to the collective attitude of the human group.
Thus, the incentive to cooperate responds to the state of the ecological system and to the agents' collective opinion, and this response can be linear, nonlinear and monotonic, or non-monotonic.
When investigating the mathematical form of this response, we find that monotonic non-linear responses may result in additional equilibria, cycles and basins of attraction compared to the linear case.
Non-monotonic responses, such as resignation effects, may produce much more complicated nullclines such as a closed nullcline and weaken our ability to anticipate the dynamics of a social-ecological system.
Regarding the modelling of the socioeconomic subsystem, the replicator dynamics and the logit best-response dynamics are widely used mathematical formulations from evolutionary game theory.
There seems to be little awareness about the impact of choosing one or the other.
The replicator dynamics assumes that the socioeconomic subsystem is stationary when all agents adopt the same behaviour, whereas the best-response dynamics assumes that this situation is not stationary.
The replicator dynamics has formal game theoretical foundations, whereas best-response dynamics comes from psychology.
Recent experiments found that the best-response dynamics explains empirical data better.
We find that the two dynamics can produce a different number of equilibria as well as differences in their stability.
The replicator dynamics is a limit case of the logit best-response dynamics when agents have an infinite rationality.
We show that even generic social-ecological models can show multistability.
In many cases, multistability allows for counterintuitive equilibria to emerge, where ecological desirability and socioeconomic desirability are not correlated.
This makes generic management recommendations difficult to find and several policies with and without socioeconomic impact should be considered.
Even in cases where there is a unique equilibrium, it can lose stability and give rise to sustained oscillations.
We can interpret these oscillations in a way similar to the cycles found in classical predator-prey systems.
In the lake pollution social-ecological model for instance, the agents' defection increases the lake pollution, which makes agents feel concerned and convince the majority to cooperate.
Then, the ecological concern decreases because the lake is not polluted and the incentive to cooperate plummets, so that it becomes more advantageous for the agents to defect again.
We show that the oscillations obtained when using the replicator dynamics tend to produce a make-or-break dynamics, where a random perturbation could shift the system to either full cooperation or full defection depending on its timing along the cycle.
Management measures may shift the location of the social-ecological system at equilibrium, but also make attractors appear or disappear in the phase plane or change the resilience of stable steady states.
The resilience of equilibria relates to basins of attraction and is especially important in the face of potential regime shifts.
Sources of uncertainty that should be taken into account for the management of social-ecological systems include
multistability and the possibility of counterintuitive equilibria,
the wide range of possible policy measures with or without socioeconomic interventions,
and the behaviour of human collectives involved, which may be described by different dynamics.
Yet, uncertainty coming from the collective behaviour of agents is mitigated if they do not give up or rely on the other agents' efforts, which allows modelling to better inform decision makers.
|
22 |
Evolution of cooperation in evolutionary games with the opting-out strategy and under random environmental noiseLi, Cong 07 1900 (has links)
Dans cette thèse, nous étudions les effets d'un environnement stochastique et de l'utilisation d'une stratégie d'opting-out sur l'évolution de la coopération dans les jeux évolutionnaires. La thèse contient 8 articles, dont 6 sont déjà publiés dans des revues avec comité de lecture. Outre l'introduction, la thèse est divisée en deux parties, la partie 1 composée de 5 articles et la partie 2 de 3 articles.
La partie 1 étudie l'impact de gains randomisés dans les jeux évolutionnaires. L'article 1 introduit les concepts de stabilité pour les jeux avec matrice de paiement aléatoire 2x2 dans des populations infinies avec des générations discrètes sans chevauchement dans un environnement stochastique. On y donne les conditions pour qu'un équilibre, sur la frontière ou à l'intérieur du simplexe des fréquences des stratégies, soit stochastiquement localement stable ou instable. L'article 2 étend les résultats de l'article 1 au cas où la valeur sélective est une fonction exponentielle du gain attendu suite à des interactions aléatoires par paires et montre que, de manière inattendue, le bruit aléatoire environnemental peut rompre un cycle périodique et favoriser la stabilité d'un équilibre intérieur. L'article 3 discute des effets de la sélection faible. Alors que les conditions de stabilité dans un environnement aléatoire reviennent aux conditions du cas déterministe lorsque l'intensité de la sélection diminue, les fluctuations aléatoires des gains peuvent accélérer la vitesse de convergence vers un équilibre stable sous une sélection plus faible. L'article 4 applique la théorie de la stabilité évolutive stochastique à un jeu randomisé de dilemme du prisonnier. On y montre que l'augmentation de la variance des gains de défection est propice à l'évolution de la coopération. L'article 5 étudie les jeux matriciels randomisés dans des populations finies et donne les conditions pour que la sélection favorise l'évolution de la coopération dans le contexte du jeu randomisé de dilemme du prisonnier.
La partie 2 considère un jeu répété de dilemme du prisonnier dans le cas où un comportement d'opting-out est adopté par chaque joueur dans les interactions par paires. L'article 6 étudie la dynamique évolutive de la coopération et de la défection dans ce contexte et montre une possible coexistence à long terme, en supposant une population infinie et un équilibre rapide (en fait, instantané) dans les fréquences des paires. L'article 7 rapporte des résultats expérimentaux avec 264 étudiants universitaires utilisant la stratégie d'opting-out qui soutiennent la prédiction théorique d'une coexistence à long terme de coopération et de défection. L'article 8 étend l'analyse du modèle avec la stratégie d'opting-out au cas d'une population finie et fournit une preuve rigoureuse des deux échelles de temps pour les fréquences de coopération et de défection d'une part et les fréquences de paires de stratégies d'autre part. / In this thesis, we study the effects of a stochastic environment and the use of an opting-out strategy on the evolution of cooperation in evolutionary games. The thesis contains 8 articles, among which 6 are already published in peer-reviewed journals. Apart from the introduction, the thesis is divided into two parts, Part 1 made with 5 articles and Part 2 with 3 articles.
Part 1 studies randomized payoffs in evolutionary games. Article 1 introduces stability concepts for 2x2 matrix games in infinite populations undergoing discrete, non-overlapping generations in a stochastic environment and gives conditions for an equilibrium, either on the boundary or in the interior of the simplex of all strategy frequencies, to be stochastically locally stable or unstable. Article 2 extends the results of Article 1 to the case where fitness is an exponential function of expected payoff in random pairwise interactions and shows that, unexpectedly, environmental random noise can break a periodic cycle and promote stability of an interior equilibrium. Article 3 discusses the effects of weak selection. While stability conditions in a random environment return to conditions in the deterministic case as selection intensity diminishes, random fluctuations in payoffs can accelerate the speed of convergence toward a stable equilibrium under weaker selection. Article 4 applies stochastic evolutionary stability theory to a randomized Prisoner's dilemma game and shows that increasing the variance in payoffs for defection is conducive to the evolution of cooperation. Article 5 studies randomized matrix games in finite populations and gives conditions for selection to favor the evolution of cooperation in the context of a randomized Prisoner's dilemma.
Part 2 considers a repeated Prisoner's dilemma game with an opting-out behavior adopted by every player in pairwise interactions. Article 6 studies the evolutionary dynamics of cooperation and defection in this context and shows possible long-term coexistence, assuming an infinite population and fast (actually, instantaneous) equilibrium in the pair frequencies. Article 7 reports experimental results with 264 university students using the opting-out strategy that support the theoretical prediction of a long-term coexistence of cooperation and defection. Article 8 extends the analysis of the model with the opting-out strategy to the case of a finite population and provides a rigorous proof of the two-time scales for the frequencies of cooperation and defection on one hand and the frequencies of strategy pairs on the other.
|
23 |
Strategies of Sexual Reproduction in Aphids / Fortpflanzungsstrategien der Sexuellen Generation von BlattläusenDagg, Joachim 30 October 2002 (has links)
No description available.
|
24 |
Évolution dans des populations structurées en classesSoares, Cíntia Dalila 05 1900 (has links)
No description available.
|
Page generated in 0.0671 seconds